ترغب بنشر مسار تعليمي؟ اضغط هنا

The energy gap of intermediate-valent SmB6 studied by point-contact spectroscopy

65   0   0.0 ( 0 )
 نشر من قبل Peter Samuely
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the intermediate valence narrow-gap semiconductor SmB6 at low temperatures using both conventional spear-anvil type point contacts as well as mechanically controllable break junctions. The zero-bias conductance varied between less than 0.01 mikrosiemens and up to 1 mS. The position of the spectral anomalies, which are related to the different activation energies and band gaps of SmB6, did not depend on the the contact size. Two different regimes of charge transport could be distinguished: Contacts with large zero - bias conductance are in the diffusive Maxwell regime. They had spectra with only small non-linearities. Contacts with small zero - bias conductance are in the tunnelling regime. They had larger anomalies, but still indicating a finite 45 % residual quasiparticle density of states at the Fermi level at low temperatures of T = 0.1 K. The density of states derived from the tunelling spectra can be decomposed into two energy-dependent parts with Eg = 21 meV and Ed = 4.5 meV wide gaps, respectively.

قيم البحث

اقرأ أيضاً

Taken together and viewed holistically, recent theory, low temperature (T) transport, photoelectron spectroscopy and quantum oscillation experiments have built a very strong case that the paradigmatic mixed valence insulator SmB6 is currently unique as a three-dimensional strongly correlated topological insulator (TI). As such, its many-body T-dependent bulk gap brings an extra richness to the physics beyond that of the weakly correlated TI materials. How will the robust, symmetry-protected TI surface states evolve as the gap closes with increasing T? For SmB6 exploiting this opportunity first requires resolution of other important gap-related issues, its origin, its magnitude, its T-dependence and its role in bulk transport. In this paper we report detailed T-dependent angle resolved photoemission spectroscopy (ARPES) measurements that answer all these questions in a unified way.
We present measurements of the local tunneling density of states in the low temperature ordered state of PrFe4P12. The temperature dependencies of the Fermi level density of states and of the integrated density of states at low bias voltages show ano malies at T=6.5 K, the onset of multipolar ordering as detected by specific heat and other macroscopic measurements. In the ordered phase, we find a local density of states with a V-shape form, indicating a partial gap opening over the Fermi surface. The size of the gap according to the tunneling spectra is about 2 meV.
FeSe single crystals have been studied by soft point-contact Andreev-reflection spectroscopy. Superconducting gap features in the differential resistance dV/dI(V) of point contacts such as a characteristic Andreev-reflection double-minimum structure have been measured versus temperature and magnetic field. Analyzing dV/dI within the extended two-gap Blonder-Tinkham-Klapwijk model allows to extract both the temperature and magnetic field dependence of the superconducting gaps. The temperature dependence of both gaps is close to the standard BCS behavior. Remarkably, the magnitude of the double-minimum structure gradually vanishes in magnetic field, while the minima position only slightly shifts with field indicating a weak decrease of the superconducting gaps. Analyzing the dV/dI(V) spectra for 25 point contacts results in the averaged gap values <Delta_L> = 1.8+/-0.4meV and <Delta_S>=1.0+/-0.2 meV and reduced values 2<Delta_L>/kTc=4.2+/-0.9 and 2<Delta_S>/kTc=2.3+/-0.5 for the large (L) and small (S) gap, respectively. Additionally, the small gap contribution was found to be within tens of percent decreasing with both temperature and magnetic field. No signatures in the dV/dI spectra were observed testifying a gapless superconductivity or presence of even smaller gaps.
143 - Y. Ishida , T. Otsu , T.Shimada 2015
Recent studies suggest that an exemplary Kondo insulator SmB6 belongs to a new class of topological insulators (TIs), in which non-trivial spin-polarized metallic states emerge on surface upon the formation of Kondo hybridization gap in the bulk. Rem arkably, the bulk resistivity reaches more than 20 Ohm cm at 4 K, making SmB6 a candidate for a so-called bulk-insulating TI. We here investigate optical-pulse responses of SmB6 by pump-and-probe photoemission spectroscopy. Surface photovoltage effect is observed below ~90 K. This indicates that an optically-active band bending region develops beneath the novel metallic surface upon the bulk-gap evolution. The photovoltaic effect persists for >200 microsec, which is long enough to be detected by electronics devices, and could be utilized for optical gating of the novel metallic surface.
Topological insulators host spin-polarized surface states which robustly span the band gap and hold promise for novel applications. Recent theoretical predictions have suggested that topologically protected surface states may similarly span the hybri dization gap in some strongly correlated heavy fermion materials, particularly SmB6. However, the process by which the Sm 4f electrons hybridize with the 5d electrons on the surface of SmB6, and the expected Fermi-level gap in the density of states out of which the predicted topological surface states must arise, have not been directly measured. We use scanning tunneling microscopy to conduct the first atomic resolution spectroscopic study of the cleaved surface of SmB6, and to reveal a robust hybridization gap which universally spans the Fermi level on four distinct surface morphologies despite shifts in the f band energy. Using a cotunneling model, we separate the density of states of the hybridized bands from which the predicted topological surface states must be disentangled. On all surfaces we observe residual spectral weight spanning the hybridization gap down to the lowest T, which is consistent with a topological surface state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا