ترغب بنشر مسار تعليمي؟ اضغط هنا

Isotopically engineered silicon/silicon-germanium nanostructures as basic elements for a nuclear spin quantum computer

111   0   0.0 ( 0 )
 نشر من قبل I. Shlimak
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The idea of quantum computation is the most promising recent developments in the high-tech domain, while experimental realization of a quantum computer poses a formidable challenge. Among the proposed models especially attractive are semiconductor based nuclear spin quantum computers (S-NSQC), where nuclear spins are used as quantum bistable elements, qubits, coupled to the electron spin and orbital dynamics. We propose here a scheme for implementation of basic elements for S-NSQCs which are realizable within achievements of the modern nanotechnology. These elements are expected to be based on a nuclear-spin-controlled isotopically engineered Si/SiGe heterojunction, because in these semiconductors one can vary the abundance of nuclear spins by engineering the isotopic composition. A specific device is suggested, which allows one to model the processes of recording, reading and information transfer on a quantum level using the technique of electrical detection of the magnetic state of nuclear spins. Improvement of this technique for a semiconductor system with a relatively small number of nuclei might be applied to the manipulation of nuclear spin qubits in the future S-NSQC.



قيم البحث

اقرأ أيضاً

401 - Issai Shlimak 2004
Natural silicon consists of three stable isotopes with atomic mass 28 (92.21%), 29 (4.70%) and 30 (3.09%). To present day, isotopic enrichment of Si was used in electronics for two goals: (i) fabrication of substrates with high level of doping and ho mogeneous distribution of impurities and (ii) for fabrication of substrates with enhanced heat conduction which allows further chips miniaturization. For the first purpose, enrichment of Si with Si-30 is used, because after irradiation of a Si ingot by the thermal neutron flux in a nuclear reactor, this isotope transmutes into a phosphorus atom which is a donor impurity in Si. Enrichment of Si with Si-30 allows one to increase the level of doping up to a factor of 30 with a high homogeneity of the impurity distribution. The second purpose is achieved in Si highly enriched with isotope Si-28, because mono-isotopic Si is characterized by enhanced thermal conductivity. New potential of isotopically engineered Si comes to light because of novel areas of fundamental and applied scientific activity connected with spintronics and a semiconductor-based nuclear spin quantum computer where electron and/or nuclear spins are the object of manipulation. In this case, control of the abundance of nuclear spins is extremely important. Fortunately, Si allows such a control, because only isotope Si-29 has a non-zero nuclear spin. Therefore, enrichment or depletion of Si with isotope Si-29 will lead to the creation of a material with a controlled concentration of nuclear spins. Two examples of nano-devices for spintronics and quantum computation, based on isotopically engineered silicon, are discussed.
An important challenge in silicon quantum electronics in the few electron regime is the potentially small energy gap between the ground and excited orbital states in 3D quantum confined nanostructures due to the multiple valley degeneracies of the co nduction band present in silicon. Understanding the valley-orbit (VO) gap is essential for silicon qubits, as a large VO gap prevents leakage of the qubit states into a higher dimensional Hilbert space. The VO gap varies considerably depending on quantum confinement, and can be engineered by external electric fields. In this work we investigate VO splitting experimentally and theoretically in a range of confinement regimes. We report measurements of the VO splitting in silicon quantum dot and donor devices through excited state transport spectroscopy. These results are underpinned by large-scale atomistic tight-binding calculations involving over 1 million atoms to compute VO splittings as functions of electric fields, donor depths, and surface disorder. The results provide a comprehensive picture of the range of VO splittings that can be achieved through quantum engineering.
Recent advances in quantum error correction (QEC) codes for fault-tolerant quantum computing cite{Terhal2015} and physical realizations of high-fidelity qubits in a broad range of platforms cite{Kok2007, Brown2011, Barends2014, Waldherr2014, Dolde201 4, Muhonen2014, Veldhorst2014} give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based entirely on complementary metal-oxide-semiconductor (CMOS) technology, which is the basis for all modern processor chips. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin states of a single electron confined in a quantum dot, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout cite{Colless2013}. This system, based entirely on available technology and existing components, is compatible with general surface code quantum error correction cite{Terhal2015}, enabling large-scale universal quantum computation.
In this work we report new silicon and germanium tubular nanostructures with no corresponding stable carbon analogues. The electronic and mechanical properties of these new tubes were investigated through ab initio methods. Our results show that the structures have lower energy than their corresponding nanoribbon structures and are stable up to high temperatures (500 and 1000 K, for silicon and germanium tubes, respectively). Both tubes are semiconducting with small indirect band gaps, which can be significantly altered by both compressive and tensile strains. Large bandgap variations of almost 50% were observed for strain rates as small as 3%, suggesting possible applications in sensor devices. They also present high Youngs modulus values (0.25 and 0.15 TPa, respectively). TEM images were simulated to help the identification of these new structures.
Electrons and holes confined in quantum dots define an excellent building block for quantum emergence, simulation, and computation. In order for quantum electronics to become practical, large numbers of quantum dots will be required, necessitating th e fabrication of scaled structures such as linear and 2D arrays. Group IV semiconductors contain stable isotopes with zero nuclear spin and can thereby serve as excellent host for spins with long quantum coherence. Here we demonstrate group IV quantum dot arrays in silicon metal-oxide-semiconductor (SiMOS), strained silicon (Si/SiGe) and strained germanium (Ge/SiGe). We fabricate using a multi-layer technique to achieve tightly confined quantum dots and compare integration processes. While SiMOS can benefit from a larger temperature budget and Ge/SiGe can make ohmic contact to metals, the overlapping gate structure to define the quantum dots can be based on a nearly identical integration. We realize charge sensing in each platform, for the first time in Ge/SiGe, and demonstrate fully functional linear and two-dimensional arrays where all quantum dots can be depleted to the last charge state. In Si/SiGe, we tune a quintuple quantum dot using the N+1 method to simultaneously reach the few electron regime for each quantum dot. We compare capacitive cross talk and find it to be the smallest in SiMOS, relevant for the tuning of quantum dot arrays. These results constitute an excellent base for quantum computation with quantum dots and provide opportunities for each platform to be integrated with standard semiconductor manufacturing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا