ﻻ يوجد ملخص باللغة العربية
The idea of quantum computation is the most promising recent developments in the high-tech domain, while experimental realization of a quantum computer poses a formidable challenge. Among the proposed models especially attractive are semiconductor based nuclear spin quantum computers (S-NSQC), where nuclear spins are used as quantum bistable elements, qubits, coupled to the electron spin and orbital dynamics. We propose here a scheme for implementation of basic elements for S-NSQCs which are realizable within achievements of the modern nanotechnology. These elements are expected to be based on a nuclear-spin-controlled isotopically engineered Si/SiGe heterojunction, because in these semiconductors one can vary the abundance of nuclear spins by engineering the isotopic composition. A specific device is suggested, which allows one to model the processes of recording, reading and information transfer on a quantum level using the technique of electrical detection of the magnetic state of nuclear spins. Improvement of this technique for a semiconductor system with a relatively small number of nuclei might be applied to the manipulation of nuclear spin qubits in the future S-NSQC.
Natural silicon consists of three stable isotopes with atomic mass 28 (92.21%), 29 (4.70%) and 30 (3.09%). To present day, isotopic enrichment of Si was used in electronics for two goals: (i) fabrication of substrates with high level of doping and ho
An important challenge in silicon quantum electronics in the few electron regime is the potentially small energy gap between the ground and excited orbital states in 3D quantum confined nanostructures due to the multiple valley degeneracies of the co
Recent advances in quantum error correction (QEC) codes for fault-tolerant quantum computing cite{Terhal2015} and physical realizations of high-fidelity qubits in a broad range of platforms cite{Kok2007, Brown2011, Barends2014, Waldherr2014, Dolde201
In this work we report new silicon and germanium tubular nanostructures with no corresponding stable carbon analogues. The electronic and mechanical properties of these new tubes were investigated through ab initio methods. Our results show that the
Electrons and holes confined in quantum dots define an excellent building block for quantum emergence, simulation, and computation. In order for quantum electronics to become practical, large numbers of quantum dots will be required, necessitating th