ﻻ يوجد ملخص باللغة العربية
We examine the Detrended Fluctuation Analysis (DFA), which is a well-established method for the detection of long-range correlations in time series. We show that deviations from scaling that appear at small time scales become stronger in higher orders of DFA, and suggest a modified DFA method to remove them. The improvement is necessary especially for short records that are affected by non-stationarities. Furthermore, we describe how crossovers in the correlation behavior can be detected reliably and determined quantitatively and show how several types of trends in the data affect the different orders of DFA.
An initially homogeneous freely evolving fluid of inelastic hard spheres develops inhomogeneities in the flow field (vortices) and in the density field (clusters), driven by unstable fluctuations. Their spatial correlations, as measured in molecular
Detrended fluctuation analysis (DFA) is a scaling analysis method used to quantify long-range power-law correlations in signals. Many physical and biological signals are ``noisy, heterogeneous and exhibit different types of nonstationarities, which c
Experiments show that macroscopic systems in a stationary nonequilibrium state exhibit long range correlations of the local thermodynamic variables. In previous papers we proposed a Hamilton-Jacobi equation for the nonequilibrium free energy as a bas
We consider near-critical two-dimensional statistical systems at phase coexistence on the half plane with boundary conditions leading to the formation of a droplet separating coexisting phases. General low-energy properties of two-dimensional field t
We develop a method for the multifractal characterization of nonstationary time series, which is based on a generalization of the detrended fluctuation analysis (DFA). We relate our multifractal DFA method to the standard partition function-based mul