ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay between spin-density-wave and superconducting states in quasi-one-dimensional conductors

103   0   0.0 ( 0 )
 نشر من قبل Claude Bourbonnais
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interference between spin-density-wave and superconducting instabilities in quasi-one-dimensional correlated metals is analyzed using the renormalization group method. At the one-loop level, we show how the interference leads to a continuous crossover from a spin-density-wave state to unconventional superconductivity when deviations from perfect nesting of the Fermi surface exceed a critical value. Singlet pairing between electrons on neighboring stacks is found to be the most favorable symmetry for superconductivity. The consequences of non uniform spin-density-wave pairing on the structure of phase diagram within the crossover region is also discussed.



قيم البحث

اقرأ أيضاً

124 - Martin Dressel 2007
Low-dimensional organic conductors could establish themselves as model systems for the investigation of the physics in reduced dimensions. In the metallic state of a one-dimensional solid, Fermi-liquid theory breaks down and spin and charge degrees o f freedom become separated. But the metallic phase is not stable in one dimension: as the temperature is reduced, the electronic charge and spin tend to arrange themselves in an ordered fashion due to strong correlations. The competition of the different interactions is responsible for which broken-symmetry ground state is eventually realized in a specific compound and which drives the system towards an insulating state. Here we review the various ordering phenomena and how they can be identified by optic and magnetic measurements. While the final results might look very similar in the case of a charge density wave and a charge-ordered metal, for instance, the physical cause is completely different. When density waves form, a gap opens in the density of states at the Fermi energy due to nesting of the one-dimension Fermi surface sheets. When a one-dimensional metal becomes a charge-ordered Mott insulator, on the other hand, the short-range Coulomb repulsion localizes the charge on the lattice sites and even causes certain charge patterns. We try to point out the similarities and conceptional differences of these phenomena and give an example for each of them. Particular emphasis will be put on collective phenomena which are inherently present as soon as ordering breaks the symmetry of the system.
We review some properties of quasi-one-dimensional organic conductors, such as the Bechgaard salts, with an emphasis on aspects related to the crossovers between a Mott insulating state to a metallic state, and crossovers between different metallic b ehaviors. We discuss why a theoretical description of these issues is a particularly challenging problem, and describe a recent non-perturbative approach designed to deal with systems of coupled chains. This method, dubbed chain-DMFT, is a generalization of dynamical mean field theory that treats both, one-dimensional and higher dimensional physics, in a unified manner. We present numerical results for a system of coupled Hubbard chains. Chain-DMFT indeed captures the metal-insulator transition and the dimensional crossover from a high temperature Luttinger liquid to a low temperature Fermi liquid phase, and allows to access the properties of these phases. Based on these results perspectives for a theoretical understanding of the physics of the Bechgaard salts are discussed.
445 - S. Brazovskii 2008
We collect evidences on existence of microscopic solitons, and their determining role in electronic processes of quasi-1D conductors. The ferroelectric charge ordering gives access to several types of solitons in conductivity and permittivity, and to solitons bound pairs in optics - both in insulating and conducting cases of TMTTF and TMTSF subfamilies. The excursion to physics of conjugated polymers allows to suggest further experiments. Internal tunnelling in Charge Density Waves goes through the channel of amplitude solitons, which correspond to the long sought quasi-particle - the spinon. The same experiment gives an access to the reversible reconstruction of the junction via spontaneous creation of a lattice of 2Pi solitons - a grid of dislocations. The individual 2Pi solitons have been visually captured in recent STM experiments. Junctions of organic and oxide conductors are anticipated to show similar effects of reconstruction.
We have measured the high field magnetoresistence and magnetization of quasi-one- dimensional (Q1D) organic conductor (Per)2Pt(mnt)2 (where Per = perylene and mnt = maleonitriledithiolate), which has a charge density wave (CDW) ground state at zero m agnetic field below 8 K. We find that the CDW ground state is suppressed with moderate magnetic fields of order 20 T, as expected from a mean field theory treatment of Pauli effects[W. Dieterich and P. Fulde, Z. Physik 265, 239 - 243 (1973)]. At higher magnetic fields, a new, density wave state with sub-phases is observed in the range 20 to 50 T, which is reminiscent of the cascade of field induced, quantized, spin density wave phases (FISDW) observed in the Bechgaard salts. The new density wave state, which we tenatively identify as a field induced charge density wave state (FICDW), is re-entrant to a low resistance state at even higher fields, of order 50 T and above. Unlike the FISDW ground state, the FICDW state is only weakly orbital, and appears for all directions of magnetic field. Our findings are substantiated by electrical resistivity, magnetization, thermoelectric, and Hall measurements. We discuss our results in light of theoretical work involving magnetic field dependent Q1D CDW ground states in high magnetic fields [D. Zanchi, A. Bjelis, and G. Montambaux, Phys. Rev. B 53, (1996)1240; A. Lebed, JETP Lett. 78,138(2003)].
We suggest a theory of internal coherent tunneling in the pseudogap region, when the applied voltage U is below the free electron gap 2Delta_0. We address quasi 1D systems, where the gap is originated by spontaneous lattice distortions of the Incomme nsurate Charge Density Wave (ICDW) type. Results can be adjusted also to quasi-1D superconductors. The instanton approach allows to calculate the interchain tunneling current both in single electron (amplitude solitons, i.e. spinons) and bi-electron (phase slips) channels. Transition rates are governed by a dissipative dynamics originated by emission of gapless phase excitations in the course of the instanton process. We find that the single-electron tunneling is allowed below the nominal gap 2Delta_0 down to the true pair-breaking threshold at 2W_as<2Delta, where W_as=2Delta/pi is the amplitude soliton energy. Most importantly, the bi-electronic tunneling stretches down to U=0 (in the 1D regime). In both cases, the threshold behavior is given by power laws J (U-U_c)^beta, where the exponent beta v_F/u is large as the ratio of the Fermi velocity v_F and the phase one u. In the 2D or 3D ordered phases, at temperature T<T_c, the one-electron tunneling current does not vanish at the threshold U_c anymore, but saturates above it at U-U_c T_c<<Delta. Also the bi-particle channel acquires a finite threshold U_c=W_ph T_c<<Delta at the energy W_ph of the 2pi phase soliton.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا