ﻻ يوجد ملخص باللغة العربية
Generalized Lotka-Volterra (GLV) models extending the (70 year old) logistic equation to stochastic systems consisting of a multitude of competing auto-catalytic components lead to power distribution laws of the (100 year old) Pareto-Zipf type. In particular, when applied to economic systems, GLV leads to power laws in the relative individual wealth distribution and in the market returns. These power laws and their exponent alpha are invariant to arbitrary variations in the total wealth of the system and to other endogenous and exogenous factors. The measured value of the exponent alpha = 1.4 is related to built-in human social and biological constraints.
Using an exhaustive list of Japanese bankruptcy in 1997, we discover a Zipf law for the distribution of total liabilities of bankrupted firms in high debt range. The life-time of these bankrupted firms has exponential distribution in correlation with
Both theoretical and applied economics have a great deal to say about many aspects of the firm, but the literature on the extinctions, or demises, of firms is very sparse. We use a publicly available data base covering some 6 million firms in the US
This paper analyses the behaviour of volatility for several international stock market indexes, namely the SP 500 (USA), the Nikkei (Japan), the PSI 20 (Portugal), the CAC 40 (France), the DAX 30 (Germany), the FTSE 100 (UK), the IBEX 35 (Spain) and
Is there a general economic pathway recapitulated by individual cities over and over? Identifying such evolution structure, if any, would inform models for the assessment, maintenance, and forecasting of urban sustainability and economic success as a
This work studies the Zipf Law for cities in Brazil. Data from censuses of 1970, 1980, 1991 and 2000 were used to select a sample containing only cities with 30,000 inhabitants or more. The results show that the population distribution in Brazilian c