ترغب بنشر مسار تعليمي؟ اضغط هنا

Excess Modes in the Vibrational Spectrum of Disordered Systems and the Boson Peak

271   0   0.0 ( 0 )
 نشر من قبل Jan W. Kantelhardt
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a disordered vibrational model system, where the spring constants k are chosen from a distribution P(k) ~ 1/k above a cut-off value k_min > 0. We can motivate this distribution by the presence of free volume in glassy materials. We show that the model system reproduces several important features of the boson peak in real glasses: (i) a low-frequency excess contribution to the Debye density of states, (ii) the hump of the specific heat c_V(T) including the power-law relation between height and position of the hump, and (iii) the transition to localized modes well above the boson peak frequency.



قيم البحث

اقرأ أيضاً

We show that a {em vibrational instability} of the spectrum of weakly interacting quasi-local harmonic modes creates the maximum in the inelastic scattering intensity in glasses, the Boson peak. The instability, limited by anharmonicity, causes a com plete reconstruction of the vibrational density of states (DOS) below some frequency $omega_c$, proportional to the strength of interaction. The DOS of the new {em harmonic modes} is independent of the actual value of the anharmonicity. It is a universal function of frequency depending on a single parameter -- the Boson peak frequency, $omega_b$ which is a function of interaction strength. The excess of the DOS over the Debye value is $proptoomega^4$ at low frequencies and linear in $omega$ in the interval $omega_b ll omega ll omega_c$. Our results are in an excellent agreement with recent experimental studies.
We study a recently introduced and exactly solvable mean-field model for the density of vibrational states $mathcal{D}(omega)$ of a structurally disordered system. The model is formulated as a collection of disordered anharmonic oscillators, with ran dom stiffness $kappa$ drawn from a distribution $p(kappa)$, subjected to a constant field $h$ and interacting bilinearly with a coupling of strength $J$. We investigate the vibrational properties of its ground state at zero temperature. When $p(kappa)$ is gapped, the emergent $mathcal{D}(omega)$ is also gapped, for small $J$. Upon increasing $J$, the gap vanishes on a critical line in the $(h,J)$ phase diagram, whereupon replica symmetry is broken. At small $h$, the form of this pseudogap is quadratic, $mathcal{D}(omega)simomega^2$, and its modes are delocalized, as expected from previously investigated mean-field spin glass models. However, we determine that for large enough $h$, a quartic pseudogap $mathcal{D}(omega)simomega^4$, populated by localized modes, emerges, the two regimes being separated by a special point on the critical line. We thus uncover that mean-field disordered systems can generically display both a quadratic-delocalized and a quartic-localized spectrum at the glass transition.
73 - W. Schirmacher , G Diezemann , 1998
We consider a system of coupled classical harmonic oscillators with spatially fluctuating nearest-neighbor force constants on a simple cubic lattice. The model is solved both by numerically diagonalizing the Hamiltonian and by applying the single-bon d coherent potential approximation. The results for the density of states $g(omega)$ are in excellent agreement with each other. As the degree of disorder is increased the system becomes unstable due to the presence of negative force constants. If the system is near the borderline of stability a low-frequency peak appears in the reduced density of states $g(omega)/omega^2$ as a precursor of the instability. We argue that this peak is the analogon of the boson peak, observed in structural glasses. By means of the level distance statistics we show that the peak is not associated with localized states.
164 - Lijin Wang , Grzegorz Szamel , 2021
Glasses possess more low-frequency vibrational modes than predicted by Debye theory. These excess modes are crucial for the understanding the low temperature thermal and mechanical properties of glasses, which differ from those of crystalline solids. Recent simulational studies suggest that the density of the excess modes scales with their frequency $omega$ as $omega^4$ in two and higher dimensions. Here, we present extensive numerical studies of two-dimensional model glass formers over a large range of glass stabilities. We find that the density of the excess modes follows $D_text{exc}(omega)sim omega^2 $ up to around the boson peak, regardless of the glass stability. The stability dependence of the overall scale of $D_text{exc}(omega)$ correlates with the stability dependence of low-frequency sound attenuation. However, we also find that in small systems, where the first sound mode is pushed to higher frequencies, at frequencies below the first sound mode there are excess modes with a system size independent density of states that scales as $omega^3$.
The inelastic scattering intensities of glasses and amorphous materials has a maximum at a low frequency, the so called Boson peak. Under applied hydrostatic pressure, $P$, the Boson peak frequency, $omega_{rm b}$, is shifted upwards. We have shown p reviously that the Boson peak is created as a result of a vibrational instability due to the interaction of harmonic quasi localized vibrations (QLV). Applying pressure one exerts forces on the QLV. These shift the low frequency part of the excess spectrum to higher frequencies. For low pressures we find a shift of the Boson peak linear in $P$, whereas for high pressures the shift is $propto P^{1/3}$. Our analytics is supported by simulation. The results are in agreement with the existing experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا