ﻻ يوجد ملخص باللغة العربية
A simple variational model is proposed to analyze the superconducting state in long cylindrical type-II superconductor placed in the external magnetic field. In the framework of this model, it is possible to solve the Ginzburg-Landau equations for the states with axially symmetric distributions of the order parameter. Phase transitions between different superconducting states are studied in the presence of external magnetic field and an equilibrium phase diagram of thin cylinder is obtained. The lower critical field of the cylindrical type-II superconductor with arbitrary values of radius and Ginzburg-Landau parameter is found. The field dependence of the magnetization of thin cylinder, which can carry several magnetic flux quanta, is calculated.
We study geometrical confinement effects in Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8 +delta}$ mesoscopic vortex-matter with edge-to-surface ratio of $7-12$%. Samples have in-plane square and circular edges, 30,$mu$m widths, and $sim 2,mu$m thickness. Direct v
Symmetry-induced vortex-antivortex configurations in superconducting squares and triangles were predicted earlier; yet, they have not been resolved in experiment up to date. Namely, with vortex-antivortex states being highly unstable with respect to
We study the instability of the superconducting state in a mesoscopic geometry for the low pinning material Mo$_3$Ge characterized by a large Ginzburg-Landau parameter. We observe that in the current driven switching to the normal state from a nonlin
A thin superconducting disk, with radius $R=4xi$ and height $H=xi$, is studied in the presence of an applied magnetic field parallel to its major axis. We study how the boundaries influence the decay of the order parameter near the edges for three-dimensional vortex states.
A simple mechanical method for the investigation of Abrikosov vortex lattice stimulated dynamics in superconductors has been used. By this method we studied the action of pulsed magnetic fields on the vortex lattice and established the resulting chan