ﻻ يوجد ملخص باللغة العربية
Transient current spectroscopy is proposed and demonstrated in order to investigate the energy relaxation inside a quantum dot in the Coulomb blockade regime. We employ a fast pulse signal to excite an AlGaAs/GaAs quantum dot to an excited state, and analyze the non-equilibrium transient current as a function of the pulse length. The amplitude and time-constant of the transient current are sensitive to the ground and excited spin states. We find that the spin relaxation time is longer than, at least, a few microsecond.
The fluctuations and the distribution of the conductance peak spacings of a quantum dot in the Coulomb-blockade regime are studied and compared with the predictions of random matrix theory (RMT). The experimental data were obtained in transport measu
During the last decades, quantum dots within the Coulomb blockade regime of transport have been proposed as essential building blocks for a wide variety of nanomachines. This includes thermoelectric devices, quantum shuttles, quantum pumps, and even
Graphene quantum dots (GQDs) have recently attracted considerable attention, with appealing properties for terahertz (THz) technology. This includes the demonstration of large thermal bolometric effects in GQDs when illuminated by THz radiation. Howe
We investigate the thermoelectric properties of a T-shaped double quantum dot system described by a generalized Anderson Hamiltonian. The systems electrical conduction (G) and the fundamental thermoelectric parameters such as the Seebeck coefficient
We report the observation of Coulomb blockade in a quantum dot contacted by two quantum point contacts each with a single fully-transmitting mode, a system previously thought to be well described without invoking Coulomb interactions. At temperatures