ﻻ يوجد ملخص باللغة العربية
Recent neutron scattering experiments in the superconducting state of YBCO have been interpreted in terms of a magnetic collective mode whose dispersion relative to the commensurate wavevector has a curvature opposite in sign to a conventional magnon dispersion. The purpose of this article is to demonstrate that simple linear response calculations are in support of a collective mode interpretation, and to explain why the dispersion has the curvature it does.
The t-t-t-J model of electrons interacting with three phonon modes (breathing, apical breathing, and buckling) is considered. The wave-vector dependence of the matrix elements of the electron-phonon interaction leads to opposite contributions to the
A magnetic field relaxation at the center of a pulse-magnetized single-domain Y-Ba-Cu-O superconductor at 78K has been studied. In case of a weak magnetization, the magnetic flux density increases logarithmically and normalized relaxation rate define
The determination of the most appropriate starting point for the theoretical description of Fe-based materials hosting high temperature superconductivity remains among the most important unsolved problem in this relatively new field. Most of the work
Photoemission spectra of Bi2Sr2CaCu2O8 reveal that the high energy feature near (pi,0), the hump, scales with the superconducting gap and persists above Tc in the pseudogap phase. As the doping decreases, the dispersion of the hump increasingly refle
In conventional metals, electron-phonon coupling, or the phonon-mediated interaction between electrons, has long been known to be the pairing interaction responsible for the superconductivity. The strength of this interaction essentially determines t