ﻻ يوجد ملخص باللغة العربية
We present the first systematic study on polycrystalline Sr2MoO4 as an electronic analogue to the spin-triplet superconductor Sr2RuO4. The Pauli paramagnetic susceptibility and metallic behaviors of specific heat and electrical resistivity have been observed. The density of states at the Fermi level D(EF) deduced from the results is about three times smaller than that of Sr2RuO4. Any indication of superconductivity intrinsic to Sr2MoO4 has not been observed down to 25 mK, which may correspond to the smaller D(EF). We discuss the origin of the difference in electronic states between Sr2MoO4 and Sr2RuO4.
At a temperature of roughly 1,K, ce{Sr2RuO4} undergoes a transition from a normal Fermi liquid to a superconducting phase. Even while the former is relatively simple and well understood, the superconducting state is not even after 25 years of study.
In search of the potential realization of novel normal-state phases on the surface of Sr2RuO4 - those stemming from either topological bulk properties or the interplay between spin-orbit coupling (SO) and the broken symmetry of the surface - we revis
A singular evolution toward an insulating phase, shown by 23Na and 13C NMR, has been observed in the superconducting fullerides (NH3)xNaK2C60 for x>1. Unlike most common cases, this insulating phase is non magnetic and 13C spin lattice relaxation sho
The electronic states near the Fermi level of recently discovered superconductor Ba$_2$CuO$_{4-delta}$ consist primarily of the Cu $d_{x^2-y^2}$ and $d_{3z^2-r^2}$ orbitals. We investigate the electronic correlation effect and the orbital polarizatio
The lattice dynamics in Sr$_2$RuO$_4$ has been studied by inelastic neutron scattering combined with shell-model calculations. The in-plane bond-stretching modes in Sr$_2$RuO$_4$ exhibit a normal dispersion in contrast to all electronically doped per