ترغب بنشر مسار تعليمي؟ اضغط هنا

Muon Spin Relaxation Study of (La, Ca)MnO3

66   0   0.0 ( 0 )
 نشر من قبل Robert H. Heffner
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report predominantly zero field muon spin relaxation measurements in a series of Ca-doped LaMnO_3 compounds which includes the colossal magnetoresistive manganites. Our principal result is a systematic study of the spin-lattice relaxation rates 1/T_1 and magnetic order parameters in the series La_{1-x}Ca_xMnO_3, x = 0.0, 0.06, 0.18, 0.33, 0.67 and 1.0. In LaMnO_3 and CaMnO_3 we find very narrow critical regions near the Neel temperatures T_N and temperature independent 1/T_1 values above T_N. From the 1/T_1 in LaMnO_3 we derive an exchange integral J = 0.83 meV which is consistent with the mean field expression for T_N. All of the doped manganites except CaMnO_3 display anomalously slow, spatially inhomogeneous spin-lattice relaxation below their ordering temperatures. In the ferromagnetic (FM) insulating La_{0.82}Ca_{0.18}MnO_3 and ferromagnetic conducting La_{0.67}Ca_{0.33}MnO_3 systems we show that there exists a bi-modal distribution of muSR rates lambda_f and lambda_s associated with relatively fast and slow Mn fluctuation rates, respectively. A physical picture is hypothesized for these FM phases in which the fast Mn rates are due to overdamped spin waves characteristic of a disordered FM, and the slower Mn relaxation rates derive from distinct, relatively insulating regions in the sample. Finally, likely muon sites are identified, and evidence for muon diffusion in these materials is discussed.



قيم البحث

اقرأ أيضاً

We report muon spin relaxation measurements on two Ti3+ containing perovskites, LaTiO3 and YTiO3, which display long range magnetic order at low temperature. For both materials, oscillations in the time-dependence of the muon polarization are observe d which are consistent with three-dimensional magnetic order. From our data we identify two magnetically inequivalent muon stopping sites. The muon spin relaxation results are compared with the magnetic structures of these compounds previously derived from neutron diffraction and muon spin relaxation studies on structurally similar compounds.
A temperature-dependent EXAFS investigation of La{1-x}Ca{x}MnO3 is presented for the concentration range that spans the ferromagnetic-insulator (FMI) to ferromagnetic-metal (FMM) transition region, x = 0.16-0.22. The samples are insulating for x = 0. 16-0.2 and show a metal/insulator transition for x = 0.22. All samples are ferromagnetic although the saturation magnetization for the 16% Ca sample is only ~ 70% of the expected value at 0.4T. We find that the FMI samples have similar correlations between changes in the local Mn-O distortions and the magnetization as observed previously for the colossal magnetoresistance (CMR) samples (0.2 < x < 0.5) - except that the FMI samples never become fully magnetized. The data show that there are at least two distinct types of distortions. The initial distortions removed as the insulating sample becomes magnetized are small and provides direct evidence that roughly 50% of the Mn sites have a small distortion/site and are magnetized first. The large remaining Mn-O distortions at low T are attributed to a small fraction of Jahn-Teller-distorted Mn sites that are either antiferromagnetically ordered or unmagnetized. Thus the insulating samples are very similar to the behavior of the CMR samples up to the point at which the M/I transition occurs for the CMR materials. The lack of metallic conductivity for x <= 0.2, when 50% or more of the sample is magnetic, implies that there must be preferred magnetized Mn sites and that such sites do not percolate at these concentrations.
Elastic neutron scattering experiments performed in semi-conducting La(1-x)Ca(x)MnO3 single crystals (x=0.05, 0.08), reveal new features in the problem of electronic phase separation and metal insulator transition. Below TN, the observation of a broa d magnetic modulation in the q-dependent scattering intensity, centered at nearly identical qm whatever the q direction, can be explained by a liquid-like spatial distribution of similar magnetic droplets. A semi-quantitative description of their magnetic state, diameter, and average distance, can be done using a two-phase model. Such a picture can explain the anomalous characteristics of the spin wave branches and may result from unmixing forces between charge carriers predicted from the s-d model.
We report the results of a muon-spin relaxation ($mu$SR) investigation of La$_{2-x}$Sr$_{x}$CoO$_{4}$, an antiferromagnetic insulating series which has been shown to support charge ordered and magnetic stripe phases and an hourglass magnetic excitati on spectrum. We present a revised magnetic phase diagram, which shows that the suppression of the magnetic ordering temperature is highly sensitive to small concentrations of holes. Distinct behavior within an intermediate $x$ range ($0.2 leq x lesssim 0.6$) suggests that the putative stripe ordered phase extends to lower $x$ than previously thought. Further charge doping ($0.67 leq x leq 0.9$) prevents magnetic ordering for $T gtrsim 1.5~{rm K}$
We present longitudinal field muon spin relaxation ($mu$SR) measurements in the unilluminated state of the photo-sensitive molecular magnetic Co-Fe Prussian blue analogues M$_{1-2x}$Co$_{1+x}$[Fe(CN)$_6$]$cdot z$ H$_2$O, where M=K and Rb with $x=0.4$ and $simeq 0.17$, respectively. These results are compared to those obtained in the $x=0.5$ stoichiometric limit, Co$_{1.5}$[Fe(CN)$_6$]$cdot 6$ H$_2$O, which is not photo-sensitive. We find evidence for correlation between the range of magnetic ordering and the value of $x$ in the unilluminated state which can be explained using a site percolation model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا