ﻻ يوجد ملخص باللغة العربية
Electrostatic and Casimir interactions limit the range of positional stability of electrostatically-actuated or capacitively-coupled mechanical devices. We investigate this range experimentally for a generic system consisting of a doubly-clamped Au suspended beam, capacitively-coupled to an adjacent stationary electrode. The mechanical properties of the beam, both in the linear and nonlinear regimes, are monitored as the attractive forces are increased to the point of instability. There pull-in occurs, resulting in permanent adhesion between the electrodes. We investigate, experimentally and theoretically, the position-dependent lifetimes of the free state (existing prior to pull-in). We find that the data cannot be accounted for by simple theory; the discrepancy may be reflective of internal structural instabilities within the metal electrodes.
Quantum fluctuations give rise to van der Waals and Casimir forces that dominate the interaction between electrically neutral objects at sub-micron separations. Under the trend of miniaturization, such quantum electrodynamical effects are expected to
We give an overview of the work done during the past ten years on the Casimir interaction in electronic topological materials, our focus being solids which possess surface or bulk electronic band structures with nontrivial topologies, which can be ev
We theoretically study the strain effect on the Casimir interactions in graphene based systems. We found that the interactions between two strained graphene sheets are strongly dependent on the direction of stretching. The influence of the strain on
The dynamical Casimir effect (DCE) manifests itself in the ultrastrong matter-field coupling (USC) regime, as a consequence of the nonadiabatic change of some parameters of a system. We show that the DCE is a fundamental limitation for standard quant
Electromagnetism in substance is characterized by permittivity (dielectric constant) and permeability (magnetic permeability). They describe the substance property {it effectively}. We present a {it geometric} approach to it. Some models are presente