ﻻ يوجد ملخص باللغة العربية
The superconducting energy gap and quasiparticle density of states (DOS) is measured by means of Andreev-reflection spectroscopy in normal metal - superconductor point contacts. It is found that both in paramagnetic and in antiferromagnetically ordered states (Tm- and Dy-compounds) the DOS has the BCS-like form while in Er- the dip in the temperature dependence of the gap is observed at the Neel temperature. In Ho-compound, the non-BCS-like form of DOS is observed in the temperature region where the incommensurate spin density waves exist along the axes a and c . Inelastic point-contact spectroscopy performed on these compounds shows that the low-frequency phonons are important for the superconducting state which are strongly mixed with the magnetic excitation branches in magnetic superconductors.
The newly discovered oxypnictide family of superconductors show very high critical temperatures of up to 55K. Whilst there is growing evidence that suggests a nodal order parameter, point contact Andreev reflection spectroscopy can provide crucial in
Our previous point-contact Andreev reflection studies of the heavy-fermion superconductor CeCoIn$_5$ using Au tips have shown two clear features: reduced Andreev signal and asymmetric background conductance [1]. To explore their physical origins, we
FeSe single crystals have been studied by soft point-contact Andreev-reflection spectroscopy. Superconducting gap features in the differential resistance dV/dI(V) of point contacts such as a characteristic Andreev-reflection double-minimum structure
We review application of point-contact Andreev-reflection spectroscopy to study elemental superconductors, where theoretical conditions for the smallness of the point-contact size with respect to the characteristic lengths in the superconductor can b
As charge carriers traverse a single superconductor ferromagnet interface they experience an additional spin-dependent phase angle which results in spin mixing and the formation of a bound state called the Andreev Bound State. This state is an essent