ترغب بنشر مسار تعليمي؟ اضغط هنا

Large oxygen-isotope effect in Sr_{0.4}K_{0.6}BiO_{3}: Evidence for phonon-mediated superconductivity

385   0   0.0 ( 0 )
 نشر من قبل Guo-Meng Zhao
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Guo-meng Zhao




اسأل ChatGPT حول البحث

Oxygen-isotope effect has been investigated in a recently discovered superconductor Sr_{0.4}K_{0.6}BiO_{3}. This compound has a distorted perovskite structure and becomes superconducting at about 12 K. Upon replacing ^{16}O with ^{18}O by 60-80%, the T_c of the sample is shifted down by 0.32-0.50 K, corresponding to an isotope exponent of alpha_{O} = 0.40(5). This isotope exponent is very close to that for a similar bismuthate superconductor Ba_{1-x}K_{x}BiO_{3} with T_c = 30 K. The very distinctive doping and T_c dependencies of alpha_{O} observed in bismuthates and cuprates suggest that bismuthates should belong to conventional phonon-mediated superconductors while cuprates might be unconventional supercondutors.

قيم البحث

اقرأ أيضاً

We study Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ multi-band superconductor with $T_c=14$K by polarization-resolved Raman spectroscopy. Deep in the superconducting state, we detect pair-breaking excitation at 45cm$^{-1}$ ($2Delta=5.6$meV) in the $XY$($B_{2g}$) scattering geometry, consistent with twice of the superconducting gap energy (3 meV) revealed by ARPES on the hole-like Fermi pocket with $d_{xz}/d_{yz}$ character. We analyze the superconductivity induced phonon self-energy effects for the $B_{1g}$(Fe) phonon and estimate the electron-phonon coupling constant $lambda^Gamma approx 0.026$, which is insufficient to explain superconductivity with $T_c=14$K.
Oxygen isotope (^{16}O/^{18}O) effects (OIEs) on the superconducting transition (T_c), the spin-glass ordering (T_g), and the antiferromagnetic ordering (T_N) temperatures were studied for Y_1-xPr_xBa_2Cu_3O_7-delta as a function of Pr content (0.0le q x leq 1.0). The OIE on T_c increases with increasing x up to xapprox0.55, where superconductivity disappears. For decreasing x the OIEs on T_N and T_g increase down to xapprox 0.7 where antiferromagnetic order and down to xapprox0.3 where spin-glass behavior vanish, respectively. The OIEs on T_g and T_N are found to have {it opposite signs} as compared to the OIE on T_c. All OIEs are suggested to arise from the isotope dependent mobility (kinetic energy) of the charge carriers.
Insight into why superconductivity in pristine and doped monolayer graphene seems strongly suppressed has been central for the recent years various creative approaches to realize superconductivity in graphene and graphene-like systems. We provide fur ther insight by studying electron-phonon coupling and superconductivity in doped monolayer graphene and hexagonal boron nitride based on intrinsic phonon modes. Solving the graphene gap equation using a detailed model for the effective attraction based on electron tight binding and phonon force constant models, the various system parameters can be tuned at will. Consistent with results in the literature, we find slight gap modulations along the Fermi surface, and the high energy phonon modes are shown to be the most significant for the superconductivity instability. The Coulomb interaction plays a major role in suppressing superconductivity at realistic dopings. Motivated by the direct onset of a large density of states at the Fermi surface for small charge dopings in hexagonal boron nitride, we also calculate the dimensionless electron-phonon coupling strength there, but the comparatively large density of states cannot immediately be capitalized on, and the charge doping necessary to obtain significant electron-phonon coupling is similar to the value in graphene.
117 - G. M. Zhao 2001
We have evaluated the total carrier mass enhancement factor f_{t} for MgB_{2} from two independent experiments (specific heat and upper critical field). These experiments consistently show that f_{t} = 3.1pm0.1. The unusually large f_{t} is incompati ble with the measured reduced gap (2Delta (0)/k_{B}T_{c} = 4.1) and the total isotope-effect exponent (alpha = 0.28pm0.04) within the conventional phonon-mediated model. We propose an unconventional phonon-mediated mechanism, which is able to quantitatively explain the values of T_{c}, f_{t}, alpha, and the reduced energy gap in a consistent way.
468 - Warren E. Pickett 2006
If history teaches us anything, it is that the next breakthrough in superconductivity will not be the result of surveying the history of past breakthroughs, as they have almost always been a matter of serendipity resulting from undirected exploration into new materials. Still, there is reason to reflect on recent advances, work toward higher T_c of even an incremental nature, and recognize that it is important to explore avenues currently believed to be unpromising even as we attempt to be rational. In this paper we look at two remarkable new unusually high temperature superconductors (UHTS), MgB2 with Tc=40 K and (in less detail) high pressure Li with Tc=20 K, with the aim of reducing their unexpected achievements to a simple and clear understanding. We also consider briefly other UHTS systems that provide still unresolved puzzles; these materials include mostly layered structures, and several with strongly bonded C-C or B-C substructures. What may be possible in phonon-coupled superconductivity is reconsidered in the light of the discussion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا