ﻻ يوجد ملخص باللغة العربية
The structure of a quantized vortex in a Bose-Einstein Condensate is investigated using the projection method developed by Peierls, Yoccoz, and Thouless. This method was invented to describe the collective motion of a many-body system beyond the mean-field approximation. The quantum fluctuation has been properly built into the variational wave function, and a vortex is described by a linear combination of Feynman wave functions weighted by a Gaussian distribution in their positions. In contrast to the solution of the Gross-Pitaevskii equation, the particle density is finite at the vortex axis and the vorticity is distributed in the core region.
Doubly quantized vortices were topologically imprinted in $|F=1>$ $^{23}$Na condensates, and their time evolution was observed using a tomographic imaging technique. The decay into two singly quantized vortices was characterized and attributed to dyn
We present a method for numerically building a vortex knot state in the superfluid wave-function of a Bose-Einstein condensate. We integrate in time the governing Gross-Pitaevskii equation to determine evolution and stability of the two (topologicall
In contrast to charge vortices in a superfluid, spin vortices in a ferromagnetic condensate move inertially (if the condensate has zero magnetization along an axis). The mass of spin vortices depends on the spin-dependent interactions, and can be mea
Understanding quantum dynamics in a two-dimensional Bose-Einstein condensate (BEC) relies on understanding how vortices interact with each others microscopically and with local imperfections of the potential which confines the condensate. Within a sy
We derive a governing equation for a Kelvin wave supported on a vortex line in a Bose-Einstein condensate, in a rotating cylindrically symmetric parabolic trap. From this solution the Kelvin wave dispersion relation is determined. In the limit of an