ﻻ يوجد ملخص باللغة العربية
We study the macroscopic quantum tunneling, self-trapping phenomena in two weakly coupled Bose-Einstein condensates with periodically time-varying atomic scattering length. The resonances in the oscillations of the atomic populations are investigated. We consider oscillations in the cases of macroscopic quantum tunneling and the self-trapping regimes. The existence of chaotic oscillations in the relative atomic population due to overlaps between nonlinear resonances is showed. We derive the whisker-type map for the problem and obtain the estimate for the critical amplitude of modulations leading to chaos. The diffusion coefficient for motion in the stochastic layer near separatrix is calculated. The analysis of the oscillations in the rapidly varying case shows the possibilty of stabilization of the unstable Pi-mode regime.
We present a new theoretical treatment of macroscopic quantum self-trapping (MQST) and quantum coherent atomic tunneling in a zero-temperature two-species Bose-Einstein condensate system in the presence of the nonlinear self-interaction of each speci
We study tunneling dynamics of atomic pairs in Bose-Einstein condensates with Feshbach resonances. It is shown that the tunneling of the atomic pairs depends on not only the tunneling coupling between the atomic condensate and the molecular condensat
Tunneling of a quasibound state is a non-smooth process in the entangled many-body case. Using time-evolving block decimation, we show that repulsive (attractive) interactions speed up (slow down) tunneling, which occurs in bursts. While the escape t
We present experimental results and a systematic theoretical analysis of dark-br ight soliton interactions and multiple-dark-bright soliton complexes in atomic t wo-component Bose-Einstein condensates. We study analytically the interactions b etween
The beyond mean-field dynamics of a bent dark soliton embedded in a two-dimensional repulsively interacting Bose-Einstein condensate is explored. We examine the case of a single bent dark soliton comparing the mean-field dynamics to a correlated appr