ترغب بنشر مسار تعليمي؟ اضغط هنا

Macroscopic quantum tunneling and resonances in coupled Bose-Einstein condensates with oscillating atomic scattering length

63   0   0.0 ( 0 )
 نشر من قبل Roberto A. Kraenkel
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the macroscopic quantum tunneling, self-trapping phenomena in two weakly coupled Bose-Einstein condensates with periodically time-varying atomic scattering length. The resonances in the oscillations of the atomic populations are investigated. We consider oscillations in the cases of macroscopic quantum tunneling and the self-trapping regimes. The existence of chaotic oscillations in the relative atomic population due to overlaps between nonlinear resonances is showed. We derive the whisker-type map for the problem and obtain the estimate for the critical amplitude of modulations leading to chaos. The diffusion coefficient for motion in the stochastic layer near separatrix is calculated. The analysis of the oscillations in the rapidly varying case shows the possibilty of stabilization of the unstable Pi-mode regime.

قيم البحث

اقرأ أيضاً

We present a new theoretical treatment of macroscopic quantum self-trapping (MQST) and quantum coherent atomic tunneling in a zero-temperature two-species Bose-Einstein condensate system in the presence of the nonlinear self-interaction of each speci es, the interspecies nonlinear interaction, and the Josephson-like tunneling interaction. It is shown that the nonlinear interactions can dramatically affect the MQST and the atomic tunneling, and lead to the collapses and revivals (CR) of population imbalance between the two condensates. The competing effects between the self-interaction of each species and the interspecies interaction can lead to the quenching of the MQST and the suppression of the CR and the Shapiro-like steps of the atomic tunneling current. It is revealed that the interatomic nonlinear interactions can induce the coherent atomic tunneling between two condensates even though there does not exist the interspecies Josephson-like tunneling coupling.
70 - Bambi Hu , Le-Man Kuang 2000
We study tunneling dynamics of atomic pairs in Bose-Einstein condensates with Feshbach resonances. It is shown that the tunneling of the atomic pairs depends on not only the tunneling coupling between the atomic condensate and the molecular condensat e, but also the inter-atomic nonlinear interactions and the initial number of atoms in these condensates. It is found that in addition to oscillating tunneling current between the atomic condensate and the molecular condensate, the nonlinear atomic-pair tunneling dynamics sustains a self-locked population imbalance: macroscopic quantum self-trapping effect. Influence of decoherence induced by non-condensate atoms on tunneling dynamics is investigated. It is shown that decoherence suppresses atomic-pair tunneling.
Tunneling of a quasibound state is a non-smooth process in the entangled many-body case. Using time-evolving block decimation, we show that repulsive (attractive) interactions speed up (slow down) tunneling, which occurs in bursts. While the escape t ime scales exponentially with small interactions, the maximization time of the von Neumann entanglement entropy between the remaining quasibound and escaped atoms scales quadratically. Stronger interactions require higher order corrections. Entanglement entropy is maximized when about half the atoms have escaped.
237 - D. Yan , J.J. Chang , C. Hamner 2011
We present experimental results and a systematic theoretical analysis of dark-br ight soliton interactions and multiple-dark-bright soliton complexes in atomic t wo-component Bose-Einstein condensates. We study analytically the interactions b etween two-dark-bright solitons in a homogeneous condensate and, then, extend ou r considerations to the presence of the trap. An effective equation of motion is derived for the dark-bright soliton center and the existence and stability of stationary two-dark-bright soliton states is illustrated (with the bright components being either in- or out-of-phase). The equation of motion provides the characteristic oscillation frequencies of the solitons, in good agreement with the eigenfrequencies of the anomalous modes of the system.
The beyond mean-field dynamics of a bent dark soliton embedded in a two-dimensional repulsively interacting Bose-Einstein condensate is explored. We examine the case of a single bent dark soliton comparing the mean-field dynamics to a correlated appr oach, the Multi-Configuration Time-Dependent Hartree method for Bosons. Dynamical snaking of this bent structure is observed, signaling the onset of fragmentation which becomes significant during the vortex nucleation. In contrast to the mean-field approximation filling of the vortex core is observed, leading in turn to the formation of filled-core vortices, instead of the mean-field vortex-antivortex pairs. The resulting smearing effect in the density is a rather generic feature, occurring when solitonic structures are exposed to quantum fluctuations. Here, we show that this filling owes its existence to the dynamical building of an antidark structure developed in the next-to-leading order orbital. We further demonstrate that the aforementioned beyond mean-field dynamics can be experimentally detected using the variance of single shot measurements. Additionally, a variety of excitations including vortices, oblique dark solitons, and open ring dark soliton-like structures building upon higher-lying orbitals is observed. We demonstrate that signatures of the higher-lying orbital excitations emerge in the total density, and can be clearly captured by inspecting the one-body coherence. In the latter context, the localization of one-body correlations exposes the existence of the multi-orbital vortex-antidark structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا