ﻻ يوجد ملخص باللغة العربية
The evolution of the spin gap of a 2-leg ladder upon doping depends upon the nature of the lowest triplet excitations in a ladder with two holes. Here we study this evolution using various numerical techniques for a t-t-J ladder as the next-near-neighbor hopping t is varied. We find that depending on the value of t, the spin gap can evolve continuously or discontinuously and the lowest triplet state can correspond to a magnon, a bound magnon-hole-pair, or two separate quasi-particles. Previous experimental results on the superconducting two-leg ladder Sr12Ca2Cu24O41 are discussed.
We present magnetic suscceptibility and heat capacity data on a new S=1/2 two-leg spin ladder compound BiCu2PO6. From our susceptibility analysis, we find that the leg coupling J1/k_B is ~ 80 K and the ratio of the rung to leg coupling J2/J1 ~ 0.9. W
Inelastic neutron scattering is used to measure the spin excitation spectrum of the Heisenberg $S=1/2$ ladder material (C$_7$H$_10$N)$_2$CuBr$_4$ in its entirety, both in the gapped spin-liquid and the magnetic field induced Tomonaga-Luttinger spin l
We investigate a spin-$1/2$ two-leg honeycomb ladder with frustrating next-nearest-neighbor (NNN) coupling along the legs, which is equivalent to two $J_1$-$J_2$ spin chains coupled with $J_perp$ at odd rungs. The full parameter region of the model i
The zero-field excitation spectrum of the strong-leg spin ladder (C$_7$H$_10$N)$_2$CuBr$_4$ (DIMPY) is studied with a neutron time-of-flight technique. The spectrum is decomposed into its symmetric and asymmetric parts with respect to the rung moment
The strong-leg S=1/2 Heisenberg spin ladder system (C7H10N)2CuBr4 is investigated using Density Matrix Renormalization Group (DMRG) calculations, inelastic neutron scattering, and bulk magneto-thermodynamic measurements. Measurements showed qualitati