ﻻ يوجد ملخص باللغة العربية
Polyelectrolytes such as single and double stranded DNA and many synthetic polymers undergo two structural transitions upon increasing the concentration of multivalent salt or molecules. First, the expanded-stretched chains in low monovalent salt solutions collapse into nearly neutral compact structures when the density of multivalent salt approaches that of the monomers. With further addition of multivalent salt the chains redissolve acquiring expanded-coiled conformations. We study the redissolution transition using a two state model [F. Solis and M. Olvera de la Cruz, {it J. Chem. Phys.} {bf 112} (2000) 2030]. The redissolution occurs when there is a high degree of screening of the electrostatic interactions between monomers, thus reducing the energy of the expanded state. The transition is determined by the chemical potential of the multivalent ions in the solution $mu$ and the inverse screening length $kappa$. The transition point also depends on the charge distribution along the chain but is almost independent of the molecular weight and degree of flexibility of the polyelectrolytes. We generate a diagram of $mu$ versus $kappa^2$ where we find two regions of expanded conformations, one with charged chains and other with overcharged (inverted charge) chains, separated by a collapsed nearly neutral conformation region. The collapse and redissolution transitions occur when the trajectory of the properties of the salt crosses the boundaries between these regions. We find that in most cases the redissolution occurs within the same expanded branch from which the chain precipitates.
The collapse of flexible polyelectrolytes in a solution of multivalent counterions is studied by means of a two state model. The states correspond to rod-like and spherically collapsed conformations respectively. We focus on the very dilute monomer c
We analyze, by means of an RPA calculation, the conditions under which a mixture of oppositely charged polyelectrolytes can micro-segregate in the neighborhood of a charged surface creating a layered structure. A number of stable layers can be formed
The behavior of mobile linkers connecting two semi-flexible charged polymers, such as polyvalent counterions connecting DNA or F-actin chains, is studied theoretically. The chain bending rigidity induces an effective repulsion between linkers at larg
We provide a theory for the dynamics of collapse of strongly charged polyelectrolytes (PEs) and flexible polyampholytes (PAs) using Langevin equation. After the initial stage, in which counterions condense onto PE, the mechanism of approach to the gl
By means of a variational approach we study the conditions under which a polyelectrolyte in a bad solvent will undergo a transition from a rod-like structure to a ``necklace structure in which the chain collapses into a series of globules joined by stretched chain segments.