ﻻ يوجد ملخص باللغة العربية
Mn $K$-edge fluorescence data are presented for thin film samples (3000~AA) of Colossal Magnetoresistive (CMR) La$_{0.67}$Ca$_{0.33}$MnO$_3$: as-deposited, and post-annealed at 1000 K and 1200 K. The local distortion is analyzed in terms of three contributions: static, phonon, and an extra, temperature-dependent, polaron term. The polaron distortion is very small for the as-deposited sample and increases with the annealing temperature. In contrast, the static distortion in the samples decreases with the annealing temperature. Although the local structure of the as-deposited sample shows very little temperature dependence, the change in resistivity with temperature is the largest of these three thin film samples. The as-deposited sample also has the highest magnetoresistance (MR), which indicates some other mechanism may also contribute to the transport properties of CMR samples. We also discuss the relationship between local distortion and the magnetization of the sample.
We report magnetization experiments in two magnetically isolated ferromagnetic nanotubes of perovskite La$_{0.67}$Ca$_{0.33}$MnO$_3$. The results show that the magnetic anisotropy is determined by the sample shape although the coercive field is reduc
Reflectivity as a function of temperature for the La$_{0.67}$Ca$_{0.33}$MnO$_{3}$ (LCMO) film has been measured across the metal-insulator phase transition. The optical properties and their temperature dependence were determined in the infrared and v
We discuss the effects of local structure on the electrical transport and magnetic properties of La(0.67)Ca(0.33)Mn(1-x)Ti(x)O(3) system.Based on the intercomparison of the structure, transport and magnetic properties of the Mn site substituted La(0.
We present a study of interlayer coupling and proximity effects in a La$_{0.66}$Ca$_{0.33}$MnO$_3$(10 nm)/YBa$_2$Cu$_3$O$_7$(10 nm) superlattice. Using element-sensitive x-ray probes, the magnetic state of Mn can be probed without seeing the strong d
In this paper, we examine the possible influence of extrinsic factors on the electrical and magnetotransport of La(0.67)Ca(0.33)Mn(1-x)Ru(x)O(3) (x < 0.10). These results not only exclude the extrinsic factors, but establishes the fact that the metal