ﻻ يوجد ملخص باللغة العربية
Finding simple, non-recursive, base noun phrases is an important subtask for many natural language processing applications. While previous empirical methods for base NP identification have been rather complex, this paper instead proposes a very simple algorithm that is tailored to the relative simplicity of the task. In particular, we present a corpus-based approach for finding base NPs by matching part-of-speech tag sequences. The training phase of the algorithm is based on two successful techniques: first the base NP grammar is read from a ``treebank corpus; then the grammar is improved by selecting rules with high ``benefit scores. Using this simple algorithm with a naive heuristic for matching rules, we achieve surprising accuracy in an evaluation on the Penn Treebank Wall Street Journal.
The paper presents some aspects involved in the formalization and implementation of HPSG theories. As basis, the logical setups of Carpenter (1992) and King (1989, 1994) are briefly compared regarding their usefulness as basis for HPSGII (Pollard and
Phrase grounding, the problem of associating image regions to caption words, is a crucial component of vision-language tasks. We show that phrase grounding can be learned by optimizing word-region attention to maximize a lower bound on mutual informa
This paper proposes the use of ``pattern-based context-free grammars as a basis for building machine translation (MT) systems, which are now being adopted as personal tools by a broad range of users in the cyberspace society. We discuss major require
Translation models based on hierarchical phrase-based statistical machine translation (HSMT) have shown better performances than the non-hierarchical phrase-based counterparts for some language pairs. The standard approach to HSMT learns and apply a
In this paper, we empirically evaluate the utility of transfer and multi-task learning on a challenging semantic classification task: semantic interpretation of noun--noun compounds. Through a comprehensive series of experiments and in-depth error an