ترغب بنشر مسار تعليمي؟ اضغط هنا

Tricolor DAGs for Machine Translation

81   0   0.0 ( 0 )
 نشر من قبل Koichi Takeda
 تاريخ النشر 1994
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Koichi Takeda




اسأل ChatGPT حول البحث

Machine translation (MT) has recently been formulated in terms of constraint-based knowledge representation and unification theories, but it is becoming more and more evident that it is not possible to design a practical MT system without an adequate method of handling mismatches between semantic representations in the source and target languages. In this paper, we introduce the idea of ``information-based MT, which is considerably more flexible than interlingual MT or the conventional transfer-based MT.



قيم البحث

اقرأ أيضاً

331 - Koichi Takeda 1996
This paper proposes the use of ``pattern-based context-free grammars as a basis for building machine translation (MT) systems, which are now being adopted as personal tools by a broad range of users in the cyberspace society. We discuss major require ments for such tools, including easy customization for diverse domains, the efficiency of the translation algorithm, and scalability (incremental improvement in translation quality through user interaction), and describe how our approach meets these requirements.
We study the calibration of several state of the art neural machine translation(NMT) systems built on attention-based encoder-decoder models. For structured outputs like in NMT, calibration is important not just for reliable confidence with predictio ns, but also for proper functioning of beam-search inference. We show that most modern NMT models are surprisingly miscalibrated even when conditioned on the true previous tokens. Our investigation leads to two main reasons -- severe miscalibration of EOS (end of sequence marker) and suppression of attention uncertainty. We design recalibration methods based on these signals and demonstrate improved accuracy, better sequence-level calibration, and more intuitive results from beam-search.
Learning target side syntactic structure has been shown to improve Neural Machine Translation (NMT). However, incorporating syntax through latent variables introduces additional complexity in inference, as the models need to marginalize over the late nt syntactic structures. To avoid this, models often resort to greedy search which only allows them to explore a limited portion of the latent space. In this work, we introduce a new latent variable model, LaSyn, that captures the co-dependence between syntax and semantics, while allowing for effective and efficient inference over the latent space. LaSyn decouples direct dependence between successive latent variables, which allows its decoder to exhaustively search through the latent syntactic choices, while keeping decoding speed proportional to the size of the latent variable vocabulary. We implement LaSyn by modifying a transformer-based NMT system and design a neural expectation maximization algorithm that we regularize with part-of-speech information as the latent sequences. Evaluations on four different MT tasks show that incorporating target side syntax with LaSyn improves both translation quality, and also provides an opportunity to improve diversity.
Machine translation has wide applications in daily life. In mission-critical applications such as translating official documents, incorrect translation can have unpleasant or sometimes catastrophic consequences. This motivates recent research on test ing methodologies for machine translation systems. Existing methodologies mostly rely on metamorphic relations designed at the textual level (e.g., Levenshtein distance) or syntactic level (e.g., the distance between grammar structures) to determine the correctness of translation results. However, these metamorphic relations do not consider whether the original and translated sentences have the same meaning (i.e., Semantic similarity). Therefore, in this paper, we propose SemMT, an automatic testing approach for machine translation systems based on semantic similarity checking. SemMT applies round-trip translation and measures the semantic similarity between the original and translated sentences. Our insight is that the semantics expressed by the logic and numeric constraint in sentences can be captured using regular expressions (or deterministic finite automata) where efficient equivalence/similarity checking algorithms are available. Leveraging the insight, we propose three semantic similarity metrics and implement them in SemMT. The experiment result reveals SemMT can achieve higher effectiveness compared with state-of-the-art works, achieving an increase of 21% and 23% on accuracy and F-Score, respectively. We also explore potential improvements that can be achieved when proper combinations of metrics are adopted. Finally, we discuss a solution to locate the suspicious trip in round-trip translation, which may shed lights on further exploration.
Knowing which words have been attended to in previous time steps while generating a translation is a rich source of information for predicting what words will be attended to in the future. We improve upon the attention model of Bahdanau et al. (2014) by explicitly modeling the relationship between previous and subsequent attention levels for each word using one recurrent network per input word. This architecture easily captures informative features, such as fertility and regularities in relative distortion. In experiments, we show our parameterization of attention improves translation quality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا