ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of phase space localization on the energy diffusion in a quantum chaotic billiard

71   0   0.0 ( 0 )
 نشر من قبل Diego A. Wisniacki
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum dynamics of a chaotic billiard with moving boundary is considered in this work. We found a shape parameter Hamiltonian expansion which enables us to obtain the spectrum of the deformed billiard for deformations so large as the characteristic wave length. Then, for a specified time dependent shape variation, the quantum dynamics of a particle inside the billiard is integrated directly. In particular, the dispersion of the energy is studied in the Bunimovich stadium billiard with oscillating boundary. The results showed that the distribution of energy spreads diffusively for the first oscillations of the boundary (${< Delta^2 E}> =2 D t$). We studied the diffusion contant $D$ as a function of the boundary velocity and found differences with theoretical predictions based on random matrix theory. By extracting highly phase space localized structures from the spectrum, previous differences were reduced significantly. This fact provides the first numerical evidence of the influence of phase space localization on the quantum diffusion of a chaotic system.



قيم البحث

اقرأ أيضاً

Measuring the degree of localization of quantum states in phase space is essential for the description of the dynamics and equilibration of quantum systems, but this topic is far from being understood. There is no unique way to measure localization, and individual measures can reflect different aspects of the same quantum state. Here, we present a general scheme to define localization in measure spaces, which is based on what we call Renyi occupations, from which any measure of localization can be derived. We apply this scheme to the four-dimensional unbounded phase space of the interacting spin-boson Dicke model. In particular, we make a detailed comparison of two localization measures based on the Husimi function in the regime where the model is chaotic, namely one that projects the Husimi function over the finite phase space of the spin and another that uses the Husimi function defined over classical energy shells. We elucidate the origin of their differences, showing that in unbounded spaces the definition of maximal delocalization requires a bounded reference subspace, with different selections leading to contextual answers.
We study numerically the scaling properties of scars in stadium billiard. Using the semiclassical criterion, we have searched systematically the scars of the same type through a very wide range, from ground state to as high as the 1 millionth state. We have analyzed the integrated probability density along the periodic orbit. The numerical results confirm that the average intensity of certain types of scars is independent of $hbar$ rather than scales with $sqrt{hbar}$. Our findings confirm the theoretical predictions of Robnik (1989).
Quantum computers are invaluable tools to explore the properties of complex quantum systems. We show that dynamical localization of the quantum sawtooth map, a highly sensitive quantum coherent phenomenon, can be simulated on actual, small-scale quan tum processors. Our results demonstrate that quantum computing of dynamical localization may become a convenient tool for evaluating advances in quantum hardware performances.
By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantu m dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.
61 - I. Varga , P. Pollner , 1999
We show that strongly localized wave functions occur around classical bifurcations. Near a saddle node bifurcation the scaling of the inverse participation ratio on Plancks constant and the dependence on the parameter is governed by an Airy function. Analytical estimates are supported by numerical calculations for the quantum kicked rotor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا