ﻻ يوجد ملخص باللغة العربية
Using multi-scale ideas from wavelet analysis, we extend singular-spectrum analysis (SSA) to the study of nonstationary time series of length $N$ whose intermittency can give rise to the divergence of their variance. SSA relies on the construction of the lag-covariance matrix C on M lagged copies of the time series over a fixed window width W to detect the regular part of the variability in that window in terms of the minimal number of oscillatory components; here W = M Dt, with Dt the time step. The proposed multi-scale SSA is a local SSA analysis within a moving window of width M <= W <= N. Multi-scale SSA varies W, while keeping a fixed W/M ratio, and uses the eigenvectors of the corresponding lag-covariance matrix C_M as a data-adaptive wavelets; successive eigenvectors of C_M correspond approximately to successive derivatives of the first mother wavelet in standard wavelet analysis. Multi-scale SSA thus solves objectively the delicate problem of optimizing the analyzing wavelet in the time-frequency domain, by a suitable localization of the signals covariance matrix. We present several examples of application to synthetic signals with fractal or power-law behavior which mimic selected features of certain climatic and geophysical time series. A real application is to the Southern Oscillation index (SOI) monthly values for 1933-1996. Our methodology highlights an abrupt periodicity shift in the SOI near 1960. This abrupt shift between 4 and 3 years supports the Devils staircase scenario for the El Nino/Southern Oscillation phenomenon.
Typical LHC analyses search for local features in kinematic distributions. Assumptions about anomalous patterns limit them to a relatively narrow subset of possible signals. Wavelets extract information from an entire distribution and decompose it at
The classical approach for studying atmospheric variability is based on defining a background state and studying the linear stability of the small fluctuations around such a state. Weakly non-linear theories can be constructed using higher order expa
Singular Spectrum Analysis (SSA) or Singular Value Decomposition (SVD) are often used to de-noise univariate time series or to study their spectral profile. Both techniques rely on the eigendecomposition of the cor- relation matrix estimated after em
This paper develops the use of wavelets as a basis set for the solution of physical problems exhibiting behavior over wide-ranges in length scale. In a simple diagrammatic language, this article reviews both the mathematical underpinnings of wavelet
We investigate the concept of molecular-sized outward-swinging gate. Our theoretical analysis, Monte Carlo simulation, and direct solution of the governing equations all suggest that across such a gate, under the condition of local nonchaoticity, the