ﻻ يوجد ملخص باللغة العربية
We study the Lagrangian dynamics of systems of N point vortices and passive particles in a two-dimensional, doubly periodic domain. The probability distribution function of vortex velocity, p_N, has a slow-velocity Gaussian component and a significant high-velocity tail caused by close vortex pairs. In the limit for N -> oo, p_N tends to a Gaussian. However, the form of the single-vortex velocity causes very slow convergence with N; for N ~ 10^6 the non-Gaussian high-velocity tails still play a significant role. At finite N, the Gaussian component is well modeled by an Ornstein-Uhlenbeck (OU) stochastic process with variance sigma_N = sqrt{N ln N /2 pi}. Considering in detail the case N=100, we show that at short times the velocity autocorrelation is dominated by the Gaussian component and displays an exponential decay with a short Lagrangian decorrelation time. The close pairs have a long correlation time and cause nonergodicity over at least the time of the integration. Due to close vortex dipoles the absolute dispersion differs significantly from the OU prediction, and shows evidence of long-time anomalous dispersion. We discuss the mathematical form of a new stochastic model for the Lagrangian dynamics, consisting of an OU model combined with long-lived close same-sign vortices engaged in rapid rotation and long-lived close dipoles engaged in ballistic motion. From a dynamical-systems perspective this work indicates that systems of dimension O(100) can have behavior which is a combination of both low-dimensional behavior, i.e. close pairs, and extremely high-dimensional behavior described by traditional stochastic processes.
Phase space structures such as dividing surfaces, normally hyperbolic invariant manifolds, their stable and unstable manifolds have been an integral part of computing quantitative results such as transition fraction, stability erosion in multi-stable
For general dissipative dynamical systems we study what fraction of solutions exhibit chaotic behavior depending on the dimensionality $d$ of the phase space. We find that a system of $d$ globally coupled ODEs with quadratic and cubic non-linearities
The long-term average response of observables of chaotic systems to dynamical perturbations can often be predicted using linear response theory, but not all chaotic systems possess a linear response. Macroscopic observables of complex dissipative cha
In the field of fluid numerical analysis, there has been a long-standing problem: lacking of a rigorous mathematical tool to map from a continuous flow field to discrete vortex particles, hurdling the Lagrangian particles from inheriting the high res
We detail how incorporating physics into neural network design can significantly improve the learning and forecasting of dynamical systems, even nonlinear systems of many dimensions. A map building perspective elucidates the superiority of Hamiltonia