ﻻ يوجد ملخص باللغة العربية
We consider a general method for computing the sum of positive Lyapunov exponents for moderately dense gases. This method is based upon hierarchy techniques used previously to derive the generalized Boltzmann equation for the time dependent spatial and velocity distribution functions for such systems. We extend the variables in the generalized Boltzmann equation to include a new set of quantities that describe the separation of trajectories in phase space needed for a calculation of the Lyapunov exponents. The method described here is especially suitable for calculating the sum of all of the positive Lyapunov exponents for the system, and may be applied to equilibrium as well as non-equilibrium situations. For low densities we obtain an extended Boltzmann equation, from which, under a simplifying approximation, we recover the sum of positive Lyapunov exponents for hard disk and hard sphere systems, obtained before by a simpler method. In addition we indicate how to improve these results by avoiding the simplifying approximation. The restriction to hard sphere systems in $d$-dimensions is made to keep the somewhat complicated formalism as clear as possible, but the method can be easily generalized to apply to gases of particles that interact with strong short range forces.
Let G be a simple algebraic group over the complex numbers containing a Borel subgroup B. Given a B-stable ideal I in the nilradical of the Lie algebra of B, we define natural numbers $m_1, m_2, ..., m_k$ which we call ideal exponents. We then propos
The Kuramoto-Sivashinsky equation is a prototypical chaotic nonlinear partial differential equation (PDE) in which the size of the spatial domain plays the role of a bifurcation parameter. We investigate the changing dynamics of the Kuramoto-Sivashin
We establish that the entropy production rate of a classically chaotic Hamiltonian system coupled to the environment settles, after a transient, to a meta-stable value given by the sum of positive generalized Lyapunov exponents. A meta-stable steady
We use the kinetic theory of gases to compute the Kolmogorov-Sinai entropy per particle for a dilute gas in equilibrium. For an equilibrium system, the KS entropy, h_KS is the sum of all of the positive Lyapunov exponents characterizing the chaotic b
Chaotic dynamics with sensitive dependence on initial conditions may result in exponential decay of correlation functions. We show that for one-dimensional interval maps the corresponding quantities, that is, Lyapunov exponents and exponential decay