ترغب بنشر مسار تعليمي؟ اضغط هنا

Monitoring the Short-Term Variability of Cyg X-1: Spectra and Timing

89   0   0.0 ( 0 )
 نشر من قبل Katja Pottschmidt
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K. Pottschmidt




اسأل ChatGPT حول البحث

We present first results from the spectral and temporal analysis of an RXTE monitoring campaign of the black hole candidate Cygnus X-1 in 1999. The timing properties of this hard state black hole show considerable variability, even though the state does not change. This has previously been noted for the power spectral density, but is probably even more pronounced for the time lags. From an analysis of four monitoring observations of Cyg X-1, separated by 2 weeks from each other, we find that a shortening of the time lags is associated with a hardening of the X-ray spectrum, as well as with a longer characteristic ``shot time scale. We briefly discuss possible physical/geometrical reasons for this variability of the hard state properties.

قيم البحث

اقرأ أيضاً

A linear dependence of the amplitude of broadband noise variability on flux for GBHC and AGN has been recently shown by Uttley & McHardy (2001). We present the long term evolution of this rms-flux-relation for Cyg X-1 as monitored from 1998-2002 with RXTE. We confirm the linear relationship in the hard state and analyze the evolution of the correlation for the period of 1996-2002. In the intermediate and the soft state, we find considerable deviations from the otherwise linear relationship. A possible explanation for the rms-flux-relation is a superposition of local mass accretion rate variations.
We study the long term evolution of the relationship between the root mean square (rms) variability and flux (the ``rms-flux relation) for the black hole Cygnus X-1 as monitored from 1996 to 2003 with the Rossi X-ray Timing Explorer (RXTE). We confir m earlier results by Uttley & McHardy (2001) of a linear relationship between rms and flux in the hard state on time scales > 5 s reflecting in its slope the fractional rms variability. We demonstrate the perpetuation of the linear rms-flux relation in the soft and the intermediate state. The existence of a non-zero intercept in the linear rms-flux relation argues for two lightcurve components, for example, one variable and one non-variable component, or a possible constant rms component. The relationship between these two hypothesized components can be described by a fundamental dependence of slope and intercept at time scales ~< 10 ksec with long term averages of the flux.
Binary systems with an accreting compact object are a unique chance to investigate the strong, clumpy, line-driven winds of early type supergiants by using the compact objects X-rays to probe the wind structure. We analyze the two-component wind of H DE 226868, the O9.7Iab giant companion of the black hole Cyg X-1 using 4.77 Ms of RXTE observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability is most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein-wind: as it does not incorporate clumping, the model does not describe the observations well. A qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could be either due to lack of a focussed wind component in the model or a more complicated clump structure.
By using available archival X-ray data, we significantly extended the list of times of X-ray minima. The new list includes 65 data points obtained by critically re-analyzing RXTE ASM data, 88 data points based on observations by MAXI, and two data po ints based on observations by SUZAKU and AstroSat. Analyzing the data along with times of X-ray minima available from the literature, we provide the most accurate estimate of the rate of period change to date. We do not confirm existence of a second derivative of the orbital period suggested by some authors earlier. Instead, we find that the changes in the period can be fit by a sum of quadratic and sinusoidal functions. The period of sinusoidal variations is 15.8 yr. They can be related either to apsidal motion in the close binary with eccentricity e=0.03 or to a presence of a third body with the mass of about 0.7 solar masses located at a distance about 16 au from the close binary. We also detect irregular and abrupt changes in the residuals between the best fit ephemeris and the data. While we discuss possible reasons for the changes, their origin remains unclear. A tentative period of about 188 days in X-ray flux variations was found. Such a period could be attributed to a small precessing disk around the compact object.
Lags measured from correlated X-ray/UV/optical monitoring of AGN allow us to determine whether UV/optical variability is driven by reprocessing of X-rays or X-ray variability is driven by UV/optical seed photon variations. We present the results of t he largest study to date of the relationship between the X-ray, UV and optical variability in an AGN with 554 observations, over a 750d period, of the Seyfert 1 galaxy NGC 5548 with Swift. There is a good overall correlation between the X-ray and UV/optical bands, particularly on short timescales (tens of days). These bands lag the X-ray band with lags which are proportional to wavelength to the power 1.23+/-0.31. This power is very close to the power (4/3) expected if short timescale UV/optical variability is driven by reprocessing of X-rays by a surrounding accretion disc. The observed lags, however, are longer than expected from a standard Shakura-Sunyaev accretion disc with X-ray heating, given the currently accepted black hole mass and accretion rate values, but can be explained with a slightly larger mass and accretion rate, and a generally hotter disc. Some long term UV/optical variations are not paralleled exactly in the X-rays, suggesting an additional component to the UV/optical variability arising perhaps from accretion rate perturbations propagating inwards through the disc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا