ترغب بنشر مسار تعليمي؟ اضغط هنا

The Orbital Period of the Accreting Pulsar GX1+4

66   0   0.0 ( 0 )
 نشر من قبل Joao Braga
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report strong evidence for a ~304-day periodicity in the spin history of the accretion-powered pulsar GX1+4 that is most probably associated with the orbital period of the system. We have used data from the Burst and Transient Source Experiment on the Compton Gamma Ray Observatory to show a clear periodic modulation of the pulsar frequency from 1991 to date, in excellent agreement with the ephemeris proposed by Cutler, Dennis & Dolan (1986). Our results indicate that the orbital period of GX1+4 is 303.8 +- 1.1 days, making it the widest known low-mass X-ray binary system by more than one order of magnitude and putting this long-standing question to rest. A likely scenario for this system is an elliptical orbit in which the neutron star decreases its spin-down rate (or even exhibits a momentary spin-up behavior) at periastron passages due to the higher torque exerted by the accretion disk onto the magnetosphere of the neutron star. These results are not inconsistent with both the X-ray pulsed flux light curve measured by BATSE during the same epoch and the X-ray flux history from the All-Sky Monitor (ASM) onboard the Rossi X-Ray Timing Explorer.



قيم البحث

اقرأ أيضاً

271 - A. Patruno 2016
The accreting millisecond pulsars IGR J00291+5934 and SAX J1808.4-3658 are two compact binaries with very similar orbital parameters. The latter has been observed to evolve on a very short timescale of ~70 Myr which is more than an order of magnitude shorter than expected. There is an ongoing debate on the possibility that the pulsar spin-down power ablates the companion generating large amount of mass-loss in the system. It is interesting therefore to study whether IGR J00291+5934 does show a similar behaviour as its twin system SAX J1808.4-3658. In this work we present the first measurement of the orbital period derivative of IGR J00291+5934. By using XMM-Newton data recorded during the 2015 outburst and adding the previous results of the 2004 and 2008 outbursts, we are able to measure a 90% confidence level upper limit for the orbital period derivative of -5x10^-13<Pb_dot<6x10^-13. This implies that the binary is evolving on a timescale longer than ~0.5 Gyr, which is compatible with the expected timescale of mass transfer driven by angular momentum loss via gravitational radiation. We discuss the scenario in which the power loss from magnetic dipole radiation of the neutron star is hitting the companion star. If this model is applied to SAX J1808.4-3658 then the difference in orbital behavior can be ascribed to a different efficiency for the conversion of the spin-down power into energetic relativistic pulsar wind and X-ray/gamma-ray radiation for the two pulsars, with IGR J00291+5934 requiring an extraordinarily low efficiency of less than 5% to explain the observations. Alternatively, the donor in IGR J00291+5934 is weakly/not magnetized which would suppress the possibility of generating mass-quadrupole variations.
279 - J. Wang , C.M. Zhang , Y.H. Zhao 2010
We investigate the spin-period evolutions of recycled pulsars in binary accreting systems. Taking both the accretion induced field decay and spin-up into consideration, we calculate their spin-period evolutions influenced by the initial magnetic-fiel d strengths, initial spin-periods and accretion rates, respectively. The results indicate that the minimum spin-period (or maximum spin frequency) of millisecond pulsar (MSP) is independent of the initial conditions and accretion rate when the neutron star (NS) accretes $sim> 0.2ms$. The accretion torque with the fastness parameter and gravitational wave (GW) radiation torque may be responsible for the formation of the minimum spin-period (maximum spin frequency). The fastest spin frequency (716 Hz) of MSP can be inferred to associate with a critical fastness parameter about $omega_{c}=0.55$. Furthermore, the comparisons with the observational data are presented in the field-period ($B-P$) diagram.
436 - A. Patruno 2011
The accreting millisecond pulsar SAX J1808.4-3658 has shown a peculiar orbital evolution in the past with an orbital expansion much faster than expected from standard binary evolutionary scenarios. Previous limits on the pulsar spin frequency derivat ive during transient accretion outbursts were smaller than predicted by standard magnetic accretion torque theory, while the spin evolution between outbursts was consistent with magnetic dipole spin-down. In this paper we present the results of a coherent timing analysis of the 2011 outburst observed by the Rossi X-ray Timing Explorer and extend our previous long-term measurements of the orbital and spin evolution over a baseline of thirteen years. We find that the expansion of the 2 hr orbit is accelerating at a rate 1.6E-20 s/s^2 and we interpret this as the effect of short-term angular momentum exchange between the mass donor and the orbit. The gravitational quadrupole coupling due to variations in the oblateness of the companion can be a viable mechanism for explaining the observations. No significant spin frequency derivatives are detected during the 2011 outburst (<4E-13 Hz/s) and the long term spin down remains stable over thirteen years with a rate of approximately -1E-15 Hz/s.
We analyze 1050 ks of INTEGRAL data of the high mass X-ray binary pulsar 1E 1145.1-6141 to study its properties over a long time baseline, from June 2003 to June 2004, with wide spectral coverage. We study three high luminosity episodes, two of the m at the system apoastron, three brightening with lower intensity, two at the periastron, and one extended period of intermediate luminosity spanning one orbital cycle. We perform timing analysis to determine the pulse period and pulse profiles at different energy ranges. We also analyze the broad band phase average spectrum of different luminosity states and perform phase resolved spectroscopy for the first flare. From the timing analysis, we find a pulse period of ~297 s around MJD 53000 with a significant scatter around the mean value. From the spectral analysis we find that the source emission can be described by an absorbed bremsstrahlung model in which the electron temperature varies between ~25 and ~37 keV, without any correlation to luminosity, and the intrinsic absorbing column is constantly of the order of 10^23 cm^-2. Phase resolved spectral analysis evidences a different temperature of the plasma in the ascending and descending edges of the pulse during the first flare. This justifies the pulse maximum shift by ~0.4 phase units between 20 and 100 keV observed in the pulse profiles. The comparison with the previous period measurements reveals that the source is currently spinning-down, in contrast to the long term secular trend observed so far indicating that at least a temporary accretion disk is formed. The study of the spectral property variations with respect to time and spin phase suggests the presence of two emitting components at different temperatures whose relative intensity varies with time.
333 - A.Baykal 2010
We present the discovery of the orbital period of Swift J1626.6-5156. Since its discovery in 2005, the source has been monitored with Rossi X-ray Timing Explorer, especially during the early stage of the outburst and into the X-ray modulating episode . Using a data span of $sim$700 days, we obtain the orbital period of the system as 132.9 days. We find that the orbit is close to a circular shape with an eccentricity 0.08, that is one of the smallest among Be/X-ray binary systems. Moreover, we find that the timescale of the X-ray modulations varied, which led to earlier suggestions of orbital periods at about a third and half of the orbital period of Swift J1626.6-5156.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا