ترغب بنشر مسار تعليمي؟ اضغط هنا

Survey of Large Planetary Nebulae in Decay

79   0   0.0 ( 0 )
 نشر من قبل Dr. Thomas Rauch
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Thomas Rauch




اسأل ChatGPT حول البحث

The Planetary Nebulae (PNe) return nuclear processed stellar material back to the interstellar medium (ISM) and thus have an important influence on the chemical evolution of our Galaxy. We present results of a survey of PNe in decay which have reached a density comparable to the ambient ISM which leads to an interaction with it. This gives us the opportunity to investigate properties of the ISM. We have identified about 20 new examples for this interaction, demonstrating that it is a more common phenomenon than previously expected: Different stages of interaction, ranging from the early (asymmetric brightness distribution) to the very advanced (parabolic or distorted shape and/or an off-center central star) are obvious.



قيم البحث

اقرأ أيضاً

132 - G.J. Madsen 2006
Accurate emission line fluxes from planetary nebulae (PNe) provide important constraints on the nature of the final phases of stellar evolution. Large, evolved PNe may trace the latest stages of PN evolution, where material from the AGB wind is retur ned to the interstellar medium. However, the low surface brightness and spatially extended emission of large PNe have made accurate measurements of line fluxes difficult with traditional long-slit spectroscopic techniques. Furthermore, distinguishing these nebulae from HII regions, supernova remnants, or interstellar gas ionized by a hot, evolved stellar core can be challenging. Here, we report on an ongoing survey of large Galactic PNe (r > 5) with the Wisconsin H-Alpha Mapper (WHAM), a Fabry-Perot spectrograph designed to detect faint diffuse optical emission lines with high sensitivity and spectral resolution. Our sample includes newly revealed H-alpha enhancements from the AAO/UKST and WHAM H-alpha surveys of Parker et al. and Haffner et al. We present accurate emission line fluxes of H-alpha, [NII], and [OIII], and compare our data to other measurements. We use the emission line ratios and kinematics of the ionized gas to assess, or in some cases reassess, the identification of some nebulae.
172 - N. C. Sterling 2007
We present results from the first large-scale survey of neutron(n)-capture element abundances in planetary nebulae (PNe). This survey was motivated by the fact that a PN may be enriched in n-capture elements if its progenitor star experienced s-proce ss nucleosynthesis during the asymptotic giant branch (AGB) phase. [Kr III] 2.199 and/or [Se IV] 2.287 $mu$m were detected in 81 PNe out of 120 PNe, for a detection rate of nearly 70%. We derive Se and Kr abundances or upper limits using ionization correction factors derived from photoionization models. A significant range is found in the Se and Kr abundances, from near solar (no enrichment), to enriched by a factor of ten. Our survey has increased the number of PNe with known n-capture element abundances by an order of magnitude, enabling us to explore correlations between s-process enrichments and other nebular and central star properties. In particular, the Se and Kr enrichments display a positive correlation with nebular C/O ratios, as theoretically expected. Peimbert Type I PNe and bipolar PNe, whose progenitors are believed to be intermediate-mass stars (>3-4 M_sun), exhibit little or no s-process enrichment. Interestingly, PNe with H-deficient [WC] central stars do not exhibit systematically larger s-process enrichments than other PNe, despite the fact that their central stars are enriched in C and probably n-capture elements. Finally, the few PNe in our sample with known or probable binary central star systems exhibit little s-process enrichment, which may be explained if binary interactions truncated their AGB phases. We also briefly discuss a new observational program to detect optical emission lines of n-capture elements, and new atomic data calculations that will greatly improve the accuracy of n-capture element abundance determinations in PNe.
Near-infrared imaging in the 1 - 0 S(1) emission line of molecular hydrogen is able to detect planetary nebulae (PNe) that are hidden from optical emission line surveys. We present images of 307 objects from the UWISH2 survey of the northern Galactic Plane, and with the aid of mid-infrared colour diagnostics draw up a list of 291 PN candidates. The majority, 183, are new detections and 85 per cent of these are not present in H$alpha$ surveys of the region. We find that more than half (54 per cent) of objects have a bipolar morphology and that some objects previously considered as elliptical or point-source in H$alpha$ imaging, appear bipolar in UWISH2 images. By considering a small subset of objects for which physical radii are available from the H$alpha$ surface brightness-radius relation, we find evidence that the H2 surface brightness remains roughly constant over a factor 20 range of radii from 0.03 to 0.6 pc, encompassing most of the visible lifetime of a PN. This leads to the H$alpha$ surface brightness becoming comparable to that of H2 at large radius (> 0:5 pc). By combining the number of UWISH2 PNe without H$alpha$ detection with an estimate of the PN detection efficiency in H2 emission, we estimate that PN numbers from H$alpha$ surveys may underestimate the true PN number by a factor between 1.5 and 2.5 within the UWISH2 survey area.
We present 21 new radio-continuum detections at catalogued planetary nebula (PN) positions in the Large Magellanic Cloud (LMC) using all presently available data from the Australia Telescope Online Archive at 3, 6, 13 and 20 cm. Additionally, 11 prev iously detected LMC radio PNe are re-examined with $ 7 $ detections confirmed and reported here. An additional three PNe from our previous surveys are also studied. The last of the 11 previous detections is now classified as a compact HII region which makes for a total sample of 31 radio PNe in the LMC. The radio-surface brightness to diameter ($Sigma$-D) relation is parametrised as $Sigma propto {D^{ - beta }}$. With the available 6~cm $Sigma$-$D$ data we construct $Sigma$-$D$ samples from 28 LMC PNe and 9 Small Magellanic Cloud (SMC) radio detected PNe. The results of our sampled PNe in the Magellanic Clouds (MCs) are comparable to previous measurements of the Galactic PNe. We obtain $beta=2.9pm0.4$ for the MC PNe compared to $beta = 3.1pm0.4$ for the Galaxy. For a better insight into sample completeness and evolutionary features we reconstruct the $Sigma$-$D$ data probability density function (PDF). The PDF analysis implies that PNe are not likely to follow linear evolutionary paths. To estimate the significance of sensitivity selection effects we perform a Monte Carlo sensitivity simulation on the $Sigma$-$D$ data. The results suggest that selection effects are significant for values larger than $beta sim 2.6$ and that a measured slope of $beta=2.9$ should correspond to a sensitivity-free value of $sim 3.4$.
248 - I. Aleman , T. Ueta , D. Ladjal 2014
We report the first detections of OH$^+$ emission in planetary nebulae (PNe). As part of an imaging and spectroscopy survey of 11 PNe in the far-IR using the PACS and SPIRE instruments aboard the Herschel Space Observatory, we performed a line survey in these PNe over the entire spectral range between 51 and 672$mu$m to look for new detections. OH$^+$ rotational emission lines at 152.99, 290.20, 308.48, and 329.77$mu$m were detected in the spectra of three planetary nebulae: NGC 6445, NGC 6720, and NGC 6781. Excitation temperatures and column densities derived from these lines are in the range of 27 to 47 K and 2$times$10$^{10}$ to 4 $times$10$^{11}$ cm$^{-2}$, respectively. In PNe, the OH+ rotational line emission appears to be produced in the photodissociation region (PDR) in these objects. The emission of OH+ is observed only in PNe with hot central stars (T$_{eff}$ > 100000 K), suggesting that high-energy photons may play a role in the OH+ formation and its line excitation in these objects, as it seems to be the case for ultraluminous galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا