ﻻ يوجد ملخص باللغة العربية
We consider the 2D wavelet transform with two scales to study sky maps of temperature anisotropies in the cosmic microwave background radiation (CMB). We apply this technique to simulated maps of small sky patches of size 12.8 times 12.8 square degrees and 1.5 times 1.5 pixels. The relation to the standard approach, based on the cls is established through the introduction of the scalogram. We consider temperature fluctuations derived from standard, open and flat-Lambda CDM models. We analyze CMB anisotropies maps plus uncorrelated Gaussian noise (uniform and non-uniform) at idfferent S/N levels. We explore in detail the denoising of such maps and compare the results with other techniques already proposed in the literature. Wavelet methods provide a good reconstruction of the image and power spectrum. Moreover, they are faster than previously proposed methods.
Analysis and denoising of Cosmic Microwave Background (CMB) maps are performed using wavelet multiresolution techniques. The method is tested on $12^{circ}.8times 12^{circ}.8$ maps with resolution resembling the experimental one expected for future h
We use wavelet and curvelet transforms to extract signals of cosmic strings from cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy expe
The properties of the Cosmic Microwave Background (CMB) maps carry valuable cosmological information. Here we report the results of the analysis hot and cold CMB anisotropy spots in the BOOMERanG 150 GHz map in terms of number, area, ellipticity, vs.
Observations of the Cosmic Microwave Background (CMB) provide increasingly accurate information about the structure of the Universe at the recombination epoch. Most of this information is encoded in the angular power spectrum of the CMB. The aim of t
We discuss a new scale-discretised directional wavelet transform to analyse spin signals defined on the sphere, in particular the polarisation of the cosmic microwave background (CMB).