ﻻ يوجد ملخص باللغة العربية
The discovery of a powerful and transient iron line feature in the X-ray afterglow spectra of gamma-ray bursts would be a major breakthrough for understanding the nature of their progenitors, strongly suggesting the presence of a large, iron rich, mass in the vicinity of the burst event. Model-independent limits to the size and the mass of the the iron line emitting region are derived and discussed. We also discuss how these results can be used to constrain the amount of beaming or anisotropy of the burst emission.
We discuss how a powerful iron line emission can be produced if ~1-5 iron rich solar masses are concentrated in the close vicinity of the burst. Recombination, thermal and fluorescent reflection are discussed. We find that recombination suffers the h
We consider a temporal response of relativistically broadened line spectrum of iron from black hole accretion irradiated by an X-ray echo under strong gravity. The physical condition of accreting gas is numerically calculated in the context of genera
We discuss some topical issues related to the Fe K emission lines in AGNs. We show remarkable agreement between non-contemporaneous ASCA and Chandra grating data and explain why there has been terrible confusion about the ASCA and post-ASCA results o
We present an extensive study of non-minimal flavour violation in the squark sector in the framework of the Minimal Supersymmetric Standard Model. We investigate the effects of multiple non-vanishing flavour-violating elements in the squark mass matr
We forecast the reionization history constraints, inferred from Lyman-alpha damping wing absorption features, for a future sample of $sim 20$ $z geq 6$ gamma-ray burst (GRB) afterglows. We describe each afterglow spectrum by a three-parameter model.