ترغب بنشر مسار تعليمي؟ اضغط هنا

Early detection of the optical counterpart to GRB 980329

192   0   0.0 ( 0 )
 نشر من قبل Javier Gorosabel Urkia
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Gorosabel




اسأل ChatGPT حول البحث

We report optical observations of the GRB 980329 error box which represent the second earliest detection of the GRB 980329 optical transient. We determine R = 23.7 $pm$ 0.5 mag on 29.89 March, which is consistent with R = 23.6 $pm$ 0.2 mag as reported by Palazzi et al. (1998) on 29.99 March. Based on extrapolations of the light curve we claim that the R-band magnitude of the GRB 980329 host galaxy should lie in the range 26.8 mag $<$ R $<$ 29 mag. We also discuss the similarities with GRB 970111.



قيم البحث

اقرأ أيضاً

285 - D. W. Fox 2003
We report our discovery and early time optical, near-infrared, and radio wavelength follow-up observations of the afterglow of the gamma-ray burst GRB 021211. Our optical observations, beginning 21 min after the burst trigger, demonstrate that the ea rly afterglow of this burst is roughly three magnitudes fainter than the afterglow of GRB 990123 at similar epochs, and fainter than almost all known afterglows at an epoch of 1d after the GRB. Our near-infrared and optical observations indicate that this is not due to extinction. Combining our observations with data reported by other groups, we identify the signature of a reverse shock. This reverse shock is not detected to a 3-sigma limit of 110 uJy in an 8.46-GHz VLA observation at t=0.10d, implying either that the Lorentz factor of the burst gamma <~ 200, or that synchrotron self-absorption effects dominate the radio emission at this time. Our early optical observations, near the peak of the optical afterglow (forward shock), allow us to characterize the afterglow in detail. Comparing our model to flux upper limits from the VLA at later times, t >~ 1 week, we find that the late-time radio flux is suppressed by a factor of two relative to the >~ 80 uJy peak flux at optical wavelengths. This suppression is not likely to be due to synchrotron self-absorption or an early jet break, and we suggest instead that the burst may have suffered substantial radiative corrections.
278 - A. Klotz , B. Gendre (3 2008
We present the time-resolved optical emission of gamma-ray bursts GRB 060904B and GRB 070420 during their prompt and early afterglow phases. We used time resolved photometry from optical data taken by the TAROT telescope and time resolved spectroscop y at high energies from the Swift spacecraft instrument. The optical emissions of both GRBs are found to increase from the end of the prompt phase, passing to a maximum of brightness at t_{peak}=9.2 min and 3.3 min for GRB 060904B and GRB 070420 respectively and then decrease. GRB 060904B presents a large optical plateau and a very large X-ray flare. We argue that the very large X-flare occurring near t_{peak} is produced by an extended internal engine activity and is only a coincidence with the optical emission. GRB 070420 observations would support this idea because there was no X-flare during the optical peak. The nature of the optical plateau of GRB 060904B is less clear and might be related to the late energy injection.
We present results of Swift optical, UV and X-ray observations of the afterglow of GRB 050801. The source is visible over the full optical, UV and X-ray energy range of the Swift UVOT and XRT instruments.Both optical and X-ray lightcurves exhibit a b road plateau (Delta t/t ~ 1) during the first few hundred seconds after the gamma-ray event. We investigate the multiwavelength spectral and timing properties of the afterglow, and we suggest that the behaviour at early times is compatible with an energy injection by a newly born magnetar with a period of a few tenths of a millisecond, which keeps the forward shock refreshed over this short interval by irradiation. Reverse shock emission is not observed. Its suppression might be due to GRB ejecta being permeated by high magnetic fields, as expected for outflows powered by a magnetar.Finally, the multiwavelength study allows a determination of the burst redshift, z=1.56.
The RAPid Telescopes for Optical Response (RAPTOR) system at Los Alamos National Laboratory observed GRB 050319 starting 25.4 seconds after gamma-ray emission triggered the Burst Alert Telescope (BAT) on-board the Swift satellite. Our well sampled li ght curve of the early optical afterglow is composed of 32 points (derived from 70 exposures) that measure the flux decay during the first hour after the GRB. The GRB 050319 light curve measured by RAPTOR can be described as a relatively gradual flux decline (power-law index alpha = -0.37) with a transition, at about 400 s after the GRB, to a faster flux decay (alpha = -0.91). The addition of other available measurements to the RAPTOR light curve suggests that another emission component emerged after 10^4 s. We hypothesize that the early afterglow emission is powered by extended energy injection or delayed reverse shock emission followed by the emergence of forward shock emission.
PROMPT (Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes) observed the early-time optical afterglow of GRB 060607A and obtained a densely sampled multiwavelength light curve that begins only tens of seconds after the GRB. Located at Cerro Tololo Inter-American Observatory in Chile, PROMPT is designed to observe the afterglows of gamma-ray bursts using multiple automated 0.4-m telescopes that image simultaneously in many filters when the afterglow is bright and may be highly variable. The data span the interval from 44 seconds after the GRB trigger to 3.3 hours in the Bgri filters. We observe an initial peak in the light curve at approximately three minutes, followed by rebrightenings peaking around 40 minutes and again at 66 minutes. Although our data overlap with the early Swift gamma-ray and x-ray light curves, we do not see a correlation between the optical and high-energy flares. We do not find evidence for spectral evolution throughout the observations. We model the variations in the light curves and find that the most likely cause of the rebrightening episodes is a refreshment of the forward shock preceded by a rapidly fading reverse shock component, although other explanations are plausible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا