ﻻ يوجد ملخص باللغة العربية
Quasi-thermal Comptonization is an attractive alternative to the synchrotron process to explain the spectra of GRBs, even if we maintain other important properties of the internal shock scenario, implying a compact emitting region and an equipartition magnetic field. Photon-photon absorption and electron-positron pairs can play a crucial role: this process may lock the effective temperature in a narrow range and may be the reason why burst spectra have high energy cut-offs close to the rest mass-energy of the electron. If the progenitors of GRB are hypernovae, the circum-burst matter is dominated by the wind of the pre-hypernova star. The presence of this dense material has strong effects on the generation of the radiation of the burst and its afterglow.
We present five simultaneous UV/X-ray observations of IC4329A by AstroSat, performed over {a five-month} period. We utilize the excellent spatial resolution of the Ultra-Violet Imaging Telescope (UVIT) onboard AstroSat to reliably separate the intrin
Highly magnetized pulsars accreting matter in a binary system are bright sources in the X-ray band (0.1-100 keV). Despite the early comprehension of the basic emission mechanism, their spectral energy distribution is generally described by phenomenol
After a rapid introduction about the models of comptonization, we present some simulations that underlines the expected capabilities of Simbol-X to constrain the presence of this process in objects like AGNs or XRB.
We present an empirical model of Comptonization for fitting the spectra of X-ray binaries. This model, simpl, has been developed as a package implemented in XSPEC. With only two free parameters, simpl is competitive as the simplest empirical model of
The minimization of electronics makes heat dissipation of related devices an increasing challenge. When the size of materials is smaller than the phonon mean free paths, phonons transport without internal scatterings and laws of diffusive thermal con