ترغب بنشر مسار تعليمي؟ اضغط هنا

NICMOS Observations of the Pre-Main-Sequence Planetary Debris System HD 98800

68   0   0.0 ( 0 )
 نشر من قبل Dean C. Hines
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spectral energy distributions (SEDs) from 0.4 to 4.7 microns are presented for the two principal stellar components of HD~98800, A and B. The third major component, an extensive planetary debris system (PDS), emits > 20% of the luminosity of star B in a blackbody SED at 164 +/- 5K extending from mid-IR to millimeter-wavelengths. At 0.95 microns a preliminary upper limit of < 0.06 is obtained for the ratio of reflected light to the total from star B. This result limits the albedo of the PDS to < 0.3. Values are presented for the temperature, luminosity, and radius of each major systemic component. Remarkable similarities are found between the PDS and the interplanetary debris system around the Sun as it could have appeared a few million years after its formation.



قيم البحث

اقرأ أيضاً

HD 98800 is a young ($sim10$ Myr old) and nearby ($sim45$ pc) quadruple system, composed of two spectroscopic binaries orbiting around each other (AaAb and BaBb), with a gas-rich disk in polar configuration around BaBb. While the orbital parameters o f BaBb and AB are relatively well constrained, this is not the case for AaAb. A full characterisation of this quadruple system can provide insights on the formation of such a complex system. The goal of this work is to determine the orbit of the AaAb subsystem and refine the orbital solution of BaBb using multi-epoch interferometric observations with the VLTI/PIONIER and radial velocities. The PIONIER observations provide relative astrometric positions and flux ratios for both AaAa and BaBb subsystems. Combining the astrometric points with radial velocity measurements, we determine the orbital parameters of both subsystems. We refined the orbital solution of BaBb and derived, for the first time, the full orbital solution of AaAb. We confirmed the polar configuration of the circumbinary disk around BaBb. From our solutions, we also inferred the dynamical masses of AaAb ($M_{Aa} = 0.93 pm 0.09$ and $M_{Ab} = 0.29 pm 0.02$ M$_{odot}$). We also revisited the parameters of the AB outer orbit. Using the N-body simulation, we show that the system should be dynamically stable over thousands of orbital periods and that it made preliminary predictions for the transit of the disk in front of AaAb which is estimated to start around 2026. We discuss the lack of a disk around AaAb, which can be explained by the larger X-ray luminosity of AaAb, promoting faster photo-evaporation of the disk. High-resolution infrared spectroscopic observations would provide radial velocities of Aa and Ab (blended lines in contemporary observations), which would allow us to calculate the dynamical masses of Aa and Ab independently of the parallax of BaBb.
We report on Keck Interferometer observations of the double-lined binary (B) component of the quadruple pre-main sequence (PMS) system HD 98800. With these interferometric observations combined with astrometric measurements made by the Hubble Space T elescope Fine Guidance Sensors (FGS), and published radial velocity observations we have estimated preliminary visual and physical orbits of the HD 98800 B subsystem. Our orbit model calls for an inclination of 66.8 $pm$ 3.2 deg, and allows us to infer the masses and luminosities of the individual components. In particular we find component masses of 0.699 $pm$ 0.064 and 0.582 $pm$ 0.051 M$_{sun}$ for the Ba (primary) and Bb (secondary) components respectively. Modeling of the component SEDs finds temperatures and luminosities in agreement with previous studies, and coupled with the component mass estimates allows for comparison with PMS models in the low-mass regime with few empirical constraints. Solar abundance models seem to under-predict the inferred component temperatures and luminosities, while assuming slightly sub-solar abundances bring the models and observations into better agreement. The present preliminary orbit does not yet place significant constraints on existing pre-main sequence stellar models, but prospects for additional observations improving the orbit model and component parameters are very good.
We present the first maps of the surface magnetic fields of a pre-main sequence binary system. Spectropolarimetric observations of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) system were obtained at the Anglo-Australian Telescope in 2004 and 2007. Both datasets are analysed using a new binary Zeeman Doppler imaging (ZDI) code. This allows us to simultaneously model the contribution of each component to the observed circularly polarised spectra. Stellar brightness maps are also produced for HD 155555 and compared to previous Doppler images. Our radial magnetic maps reveal a complex surface magnetic topology with mixed polarities at all latitudes. We find rings of azimuthal field on both stars, most of which are found to be non-axisymmetric with the stellar rotational axis. We also examine the field strength and the relative fraction of magnetic energy stored in the radial and azimuthal field components at both epochs. A marked weakening of the field strength of the secondary star is observed between the 2004 and 2007 epochs. This is accompanied by an apparent shift in the location of magnetic energy from the azimuthal to radial field. We suggest that this could be indicative of a magnetic activity cycle. We use the radial magnetic maps to extrapolate the coronal field (by assuming a potential field) for each star individually - at present ignoring any possible interaction. The secondary star is found to exhibit an extreme tilt (~75 deg) of its large scale magnetic field to that of its rotation axis for both epochs. The field complexity that is apparent in the surface maps persists out to a significant fraction of the binary separation. Any interaction between the fields of the two stars is therefore likely to be complex also. Modelling this would require a full binary field extrapolation.
We present the first measurements of surface differential rotation on a pre-main sequence binary system. Using intensity (Stokes I) and circularly polarised (Stokes V) timeseries spectra, taken over eleven nights at the Anglo-Australian Telescope (AA T), we incorporate a solar-like differential rotation law into the surface imaging process. We find that both components of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) binary system show significant differential rotation. The equator-pole laptimes as determined from the intensity spectra are 80 days for the primary star and 163 days for the secondary. Similarly for the magnetic spectra we obtain equator-pole laptimes of 44 and 71 days respectively, showing that the shearing timescale of magnetic regions is approximately half that found for stellar spots. Both components are therefore found to have rates of differential rotation similar to those of the same spectral type main sequence single stars. The results for HD 155555 are therefore in contrast to those found in other, more evolved, binary systems where negligible or weak differential rotation has been discovered. We discuss two possible explanations for this; firstly that at the age of HD 155555 binary tidal forces have not yet had time to suppress differential rotation, secondly that the weak differential rotation previously observed on evolved binaries is a consequence of their large convection zone depths. We suggest that the latter is the more likely solution and show that both temperature and convection zone depth (from evolutionary models) are good predictors of differential rotation strength. Finally, we also examine the possible consequences of the measured differential rotation on the interaction of binary star coronae.
We present infrared photometry obtained with the IRAC camera on the Spitzer Space Telescope of a sample of 82 pre-main sequence stars and brown dwarfs in the Taurus star-forming region. We find a clear separation in some IRAC color-color diagrams bet ween objects with and without disks. A few ``transition objects are noted, which correspond to systems in which the inner disk has been evacuated of small dust. Separating pure disk systems from objects with remnant protostellar envelopes is more difficult at IRAC wavelengths, especially for objects with infall at low rates and large angular momenta. Our results generally confirm the IRAC color classification scheme used in previous papers by Allen et al. and Megeath et al. to distinguish between protostars, T Tauri stars with disks, and young stars without (inner) disks. The observed IRAC colors are in good agreement with recent improved disk models, and in general accord with models for protostellar envelopes derived from analyzing a larger wavelength region. We also comment on a few Taurus objects of special interest. Our results should be useful for interpreting IRAC results in other, less well-studied star-forming regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا