ترغب بنشر مسار تعليمي؟ اضغط هنا

How Saturated are Absorption Lines in the Broad Absorption Line Quasar PG 1411+442 ?

130   0   0.0 ( 0 )
 نشر من قبل Tinggui Wang
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T.G. Wang




اسأل ChatGPT حول البحث

Recently, convincing evidence was found for extremely large X-ray absorption by column densities $> 10^{23} cm^{-2}$ in broad absorption line quasars. One consequence of this is that any soft X-ray emission from these QSOs would be the scattered light or leaked light from partially covering absorbing material. A detection of the unabsorbed soft X-ray and absorbed hard X-ray compo nent will allow to determine the total column density as well as the effective covering factor of the absorbing material, which can be hardly obtained from the UV absorption lines. Brinkmann et al. (1999) showed that both the unabsorbed and absorbed components are detected in the nearby very bright broad absorption line quasar PG 1411+442. In this letter, we make a further analysis of the broad band X-ray spectrum and the UV spectrum from HST, and demonstrate that broad absorption lines are completely saturated at the bottom of absorption troughs.



قيم البحث

اقرأ أيضاً

91 - Patrick B. Hall 2006
I report the discovery of blueshifted broad absorption line (BAL) troughs in at least six transitions of the Balmer series of hydrogen (Hbeta to H9) and in CaII, MgII and excited FeII in the quasar SDSS J125942.80+121312.6. This is only the fourth ac tive galactic nucleus known to exhibit Balmer absorption, all four in conjunction with low-ionization BAL systems containing excited Fe II. The substantial population in the n=2 shell of H I in this quasars absorber likely arises from Ly-alpha trapping. In an absorber sufficiently optically thick to show Balmer absorption, soft X-rays from the quasar penetrate to large tau_Lyalpha and ionize H I. Recombination then creates Ly-alpha photons that increase the n=2 population by a factor tau_Lyalpha since they require about tau_Lyalpha scatterings to diffuse out of the absorber. Observing Ly-alpha trapping in a quasar absorber requires a large but Compton-thin column of gas along our line of sight which includes substantial H I but not too much dust. Presumably the rarity of Balmer-line BAL troughs reflects the rarity of such conditions in quasar absorbers.
Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that likely exist in all quasars and could play a major role in feedback to galaxy evolution. Studying the variability in these BALs can help us understand the structure, evolution, and basic physical properties of these outflows. We are conducting a BAL monitoring program, which so far includes 163 spectra of 24 luminous quasars, covering time-scales from sim 1 week to 8 years in the quasar rest-frame. We investigate changes in both the CIV {lambda}1550 and SiIV {lambda}1400 BALs, and we report here on some of the results from this program.
405 - Sapna Mishra 2019
We report the first systematic search for blazars among broad-absorption-line (BAL) quasars. This is based on our intranight optical monitoring of a well-defined sample of 10 candidates selected on the criteria of a flat spectrum and an abnormally hi gh linear polarization at radio wavelengths. A small population of BAL blazars can be expected in the polar model of BAL quasars. However, no such case is found, since none of our 30 monitoring sessions devoted to the 10 candidates yielded a positive detection of intra-night optical variability (INOV), which is uncharacteristic of blazars. This lack of INOV detection contrasts with the high duty cycle of INOV observed for a comparison sample of 15 normal (i.e., non-BAL) blazars. Some possible implications of this are pointed out.
We investigate the X-ray properties of PG 1004+130, a low-redshift radio-loud broad absorption line (BAL) quasar with a hybrid FR I/FR II radio morphology. The 22.2 ks XMM-Newton and 41.6 ks Chandra observations presented here are the first X-ray det ections of PG 1004+130 and constitute the highest spectral quality X-ray observations of a radio-loud BAL quasar available to date. The Chandra ACIS-S spectrum shows evidence for complex soft X-ray absorption not detected in the data obtained 1.7 yr previously with XMM-Newton, with a best-fit intrinsic column density of N_H=1.2e22 cm-2 for the preferred partial-covering model. There is no significant difference in the hard-band power-law photon index of ~1.5 between the two observations. The Chandra image also reveals extended X-ray emission ~8 (30 kpc) south-east of the nucleus, aligned with the FR I jet but upstream of the 1.4 GHz radio-brightness peak. The jet is not detected by HST, and the optical upper limit rules out a simple single-component synchrotron interpretation of the radio-to-X-ray emission. The multiwavelength characteristics of the PG 1004+130 jet, including its relatively flat X-ray power law and concave spectral energy distribution, are similar to those of powerful FR II jets. The lack of strong beaming in PG 1004+130 limits the efficiency of inverse Compton upscattering, and we consider the X-ray emission to most likely arise from a second synchrotron component generated by highly energetic electrons.
CRTS J084133.15+200525.8 is an optically bright quasar at z=2.345 that has shown extreme spectral variability over the past decade. Photometrically, the source had a visual magnitude of V~17.3 between 2002 and 2008. Then, over the following five year s, the source slowly brightened by approximately one magnitude, to V~16.2. Only ~1 in 10,000 quasars show such extreme variability, as quantified by the extreme parameters derived for this quasar assuming a damped random walk model. A combination of archival and newly acquired spectra reveal the source to be an iron low-ionization broad absorption line (FeLoBAL) quasar with extreme changes in its absorption spectrum. Some absorption features completely disappear over the 9 years of optical spectra, while other features remain essentially unchanged. We report the first definitive redshift for this source, based on the detection of broad H-alpha in a Keck/MOSFIRE spectrum. Absorption systems separated by several 1000 km/s in velocity show coordinated weakening in the depths of their troughs as the continuum flux increases. We interpret the broad absorption line variability to be due to changes in photoionization, rather than due to motion of material along our line of sight. This source highlights one sort of rare transition object that astronomy will now be finding through dedicated time-domain surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا