ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical Abundance Gradients in the Star-Forming Ring Galaxies

55   0   0.0 ( 0 )
 نشر من قبل Y. Divakara Mayya
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ring waves of star formation, propagating outwardly in the galactic disks, leave chemical abundance gradients in their wakes. We show that the relative [Fe/O] abundance gradients in ring galaxies can be used as a tool for determining the role of the SNIa explosions in their chemical enrichment. We consider two mechanisms which can create outwardly propagating star forming rings in a purely gaseous disk -- a self-induced wave and a density wave, and demonstrate that the radial distribution of the relative [Fe/O] abundance gradients does not depend on the particular mechanism of the wave formation or on the parameters of the star-forming process. We show that the [Fe/O] profile is determined by the velocity of the wave, initial mass function, and the initial chemical composition of the star-forming gas. If the role of SNIa explosions is negligible in the chemical enrichment, the ratio [Fe/O] remains constant throughout the galactic disk with a steep gradient at the wave front. If SNIa stars are important in the production of cosmic iron, the [Fe/O] ratio has gradient in the wake of the star-forming wave with the value depending on the frequency of SNIa explosions.

قيم البحث

اقرأ أيضاً

It has recently been suggested that galaxies in the early Universe can grow through the accretion of cold gas, and that this may have been the main driver of star formation and stellar mass growth. Because the cold gas is essentially primordial, it h as a very low abundance of elements heavier than helium (metallicity). As it is funneled to the centre of a galaxy, it will lead the central gas having an overall lower metallicity than gas further from the centre, because the gas further out has been enriched by supernovae and stellar winds, and not diluted by the primordial gas. Here we report chemical abundances across three rotationally-supported star-forming galaxies at z~3, only 2 Gyr after the Big Bang. We find an inverse gradient, with the central, star forming regions having a lower metallicity than less active ones, opposite to what is seen in local galaxies. We conclude that the central gas has been diluted by the accretion of primordial gas, as predicted by cold flow models.
In this paper, we study the formation and chemical evolution of the Milky Way disc with particular focus on the abundance patterns ([$alpha$/Fe] vs. [Fe/H]) at different Galactocentric distances, the present-time abundance gradients along the disc an d the time evolution of abundance gradients. We consider the chemical evolution models for the Galactic disc developed by Grisoni et al. (2017) for the solar neighborhood, both the two-infall and the one-infall ones, and we extend our analysis to the other Galactocentric distances. In particular, we examine the processes which mainly influence the formation of the abundance gradients: the inside-out scenario, a variable star formation efficiency, and radial gas flows. We compare our model results with recent abundance patterns obtained along the Galactic disc from the APOGEE survey and with abundance gradients observed from Cepheids, open clusters, HII regions and PNe. We conclude that the inside-out scenario is a key ingredient, but cannot be the only one to explain abundance patterns at different Galactocentric distances and abundance gradients. Further ingredients, such as radial gas flows and variable star formation efficiency, are needed to reproduce the observed features in the thin disc. The evolution of abundance gradients with time is also shown, although firm conclusions cannot still be drawn.
The rest-frame UV-optical (i.e., $NUV-B$) color is sensitive to both low-level recent star formation (specific star formation rate - sSFR) and dust. In this Letter, we extend our previous work on the origins of $NUV-B$ color gradients in star-forming galaxies (SFGs) at $zsim1$ to those at $zsim2$. We use a sample of 1335 large (semi-major axis radius $R_{rm SMA}>0.18$) SFGs with extended UV emission out to $2R_{rm SMA}$ in the mass range $M_{ast} = 10^{9}-10^{11}M_{odot}$ at $1.5<z<2.8$ in the CANDELS/GOODS-S and UDS fields. We show that these SFGs generally have negative $NUV-B$ color gradients (redder centres), and their color gradients strongly increase with galaxy mass. We also show that the global rest-frame $FUV-NUV$ color is approximately linear with $A_{rm V}$, which is derived by modeling the observed integrated FUV to NIR spectral energy distributions of the galaxies. Applying this integrated calibration to our spatially-resolved data, we find a negative dust gradient (more dust extinguished in the centers), which steadily becomes steeper with galaxy mass. We further find that the $NUV-B$ color gradients become nearly zero after correcting for dust gradients regardless of galaxy mass. This indicates that the sSFR gradients are negligible and dust reddening is likely the principal cause of negative UV-optical color gradients in these SFGs. Our findings support that the buildup of the stellar mass in SFGs at the Cosmic Noon is self-similar inside $2R_{rm SMA}$.
We use a 0.040 < z < 0.085 sample of 37866 star-forming galaxies from the Fourth Data Release of the Sloan Digital Sky Survey to investigate the dependence of gas-phase chemical properties on stellar mass and environment. The local density, determine d from the projected distances to the fourth and fifth nearest neighbours, is used as an environment indicator. Considering environments ranging from voids, i.e., log Sigma < -0.8, to the periphery of galaxy clusters, i.e., log Sigma =~ 0.8, we find no dependence of the relationship between galaxy stellar mass and gas-phase oxygen abundance, along with its associated scatter, on local galaxy density. However, the star-forming gas in galaxies shows a marginal increase in the chemical enrichment level at a fixed stellar mass in denser environments. Compared with galaxies of similar stellar mass in low density environments, they are enhanced by a few per cent for massive galaxies to about 20 per cent for galaxies with stellar masses < 10^{9.5} solar masses. These results imply that the evolution of star-forming galaxies is driven primarily by their intrinsic properties and is largely independent of their environment over a large range of local galaxy density.
93 - Y. C. Liang 2006
Using a large sample of 38,478 star-forming galaxies selected from the Second Data Release of the Sloan Digital Sky Survey database (SDSS-DR2), we derive analytical calibrations for oxygen abundances from several metallicity-sensitive emission-line r atios: [N II]/H_alpha, [O III]/[N II], [N II]/[O II], [N II]/[S II], [S II]/H_alpha, and [O III]/H_beta. This consistent set of strong-line oxygen abundance calibrations will be useful for future abundance studies. Among these calibrations, [N II]/[O II] is the best for metal-rich galaxies due to its independence on ionization parameter and low scatter. Dust extinction must be considered properly at first. These calibrations are more suitable for metal-rich galaxies (8.4<12+log(O/H)<9.3), and for the nuclear regions of galaxies. The observed relations are consistent with those expected from the photoionization models of Kewley & Dopita (2002). However, most of the observational data spread in a range of ionization parameter q from 1*10^7 to 8*10^7 cm s^{-1}, corresponding to logU= -3.5 to -2.5, narrower than that suggested by the models. We also estimate the (N/O) abundance ratios of this large sample of galaxies, and these are consistent with the combination of a primary and a dominant secondary components of nitrogen.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا