ترغب بنشر مسار تعليمي؟ اضغط هنا

High Energy Cosmic Neutrinos Astronomy: The ANTARES Project

57   0   0.0 ( 0 )
 نشر من قبل Basa Stephane
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Basa




اسأل ChatGPT حول البحث

Neutrinos may offer a unique opportunity to explore the far Universe at high energy. The ANTARES collaboration aims at building a large undersea neutrino detector able to observe astrophysical sources (AGNs, X-ray binary systems, ...) and to study particle physics topics (neutrino oscillation, ...). After a description of the research opportunities of such a detector, a status report of the experiment will be made.



قيم البحث

اقرأ أيضاً

Results are presented of a search for cosmic sources of high energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 +/- 0.1 degrees. The neutrino flux sensitivity is 7.5 x 10-8 ~ (E/GeV)^-2 GeV^-1 s^-1 cm^-2 for the part of the sky that is always visible (declination < -48 degrees), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.
56 - G.F. Burgio 2004
The ANTARES project aims at the construction of a neutrino telescope 2500 m below the surface of the Mediterranean sea, close to the southern French coast. The apparatus will consist of a 3D array of photomultiplier tubes, which detects the Cherenkov light emitted by upward going neutrino-induced muons. High-energy neutrinos may be produced in powerful cosmic accelerators, such as, gamma-ray bursters, active galactic nuclei, supernova remnants, and microquasars. We have estimated the event rate in ANTARES of neutrinos coming from these sources, and particularly for a microquasar model, and found that for some of these sources the detection rate can be up to several events per year.
Gamma-ray bursts are thought to be sites of hadronic acceleration, thus neutrinos are expected from the decay of charged particles, produced in p{gamma} interactions. The methods and results of a search for muon neutrinos in the data of the ANTARES n eutrino telescope from four bright GRBs (GRB 080916C, GRB 110918A, GRB 130427A and GRB 130505A) observed between 2008 and 2013 are presented. Two scenarios of the fireball model have been investigated: the internal shock scenario, leading to the production of neutrinos with energies mainly above 100 TeV, and the photospheric scenario, characterised by a low-energy component in neutrino spectra due to the assumption of neutrino production closer to the central engine. Since no neutrino events have been detected in temporal and spatial coincidence with these bursts, upper limits at 90% C.L. on the expected neutrino fluxes are derived. The non-detection allows for directly constraining the bulk Lorentz factor of the jet {Gamma} and the baryon loading fp.
349 - Guenter Sigl 2012
This is a summary of a series of lectures on the current experimental and theoretical status of our understanding of origin and nature of cosmic radiation. Specific focus is put on ultra-high energy cosmic radiation above ~10^17 eV, including seconda ry neutral particles and in particular neutrinos. The most important open questions are related to the mass composition and sky distributions of these particles as well as on the location and nature of their sources. High energy neutrinos at GeV energies and above from extra-terrestrial sources have not yet been detected and experimental upper limits start to put strong contraints on the sources and the acceleration mechanism of very high energy cosmic rays.
137 - S. Ando , B. Baret 2012
Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves (GW) and high-energy neutrinos (HEN). Both GWs and HENs may escape very dense media and travel unaffected over cosmological distances, carrying information from the innermost regions of the astrophysical engines. Such messengers could also reveal new, hidden sources that have not been observed by conventional photon-based astronomy. Coincident observation of GWs and HENs may thus play a critical role in multimessenger astronomy. This is particularly true at the present time owing to the advent of a new generation of dedicated detectors: IceCube, ANTARES, VIRGO and LIGO. Given the complexity of the instruments, a successful joint analysis of this data set will be possible only if the expertise and knowledge of the data is shared between the two communities. This review aims at providing an overview of both theoretical and experimental state-of-the-art and perspectives for such a GW+HEN multimessenger astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا