ﻻ يوجد ملخص باللغة العربية
We predict the amount of cometary, interplanetary, and interstellar cosmic dust that is to be measured by the Cometary and Interstellar Dust Analyzer (CIDA) and the aerogel collector on-board the Stardust spacecraft during its fly-by of comet P/Wild 2 and during the interplanetary cruise phase. We give the dust flux on the spacecraft during the encounter with the comet using both, a radially symmetric and an axially symmetric coma model. At closest approach, we predict a total dust flux of $10^{6.0} m^{-2} s^{-1}$ for the radially symmetric case and $10^{6.5} m^{-2} s^{-1}$ for the axially symmetric case. This prediction is based on an observation of the comet at a heliocentric distance of $1.7 {rm AU}$. We reproduce the measurements of the Giotto and VEGA missions to comet P/Halley using the same model as for the Stardust predictions. The planned measurements of {em interstellar} dust by Stardust have been triggered by the discovery of interstellar dust impacts in the data collected by the Ulysses and Galileo dust detector. Using the Ulysses and Galileo measurements we predict that 25 interstellar particles, mainly with masses of about $10^{-12} g$, will hit the target of the CIDA experiment. The interstellar side of the aerogel collector will contain 120 interstellar particles, 40 of which with sizes greater than $1 mu m$. We furthermore investigate the ``contamination of the CIDA and collector measurements by interplanetary particles during the cruise phase.
The high spectral resolution and sensitivity of Herschel/HIFI allows for the detection of multiple rotational water lines and accurate determinations of water production rates in comets. In this letter we present HIFI observations of the fundamental
Individual particles from comet 81P/Wild 2 collected by NASAs Stardust mission vary in size from small sub-$mu$m fragments found in the walls of the aerogel tracks, to large fragments up to tens of $mu$m in size found towards the termini of tracks. T
We present the mass distribution of interstellar grains measured in situ by the Galileo and Ulysses spaceprobes as cumulative flux. The derived in situ mass distribution per logarithmic size interval is compared to the distribution determined by fitt
We report the petrology, O isotopic composition, and Al-Mg isotope systematics of a chondrule fragment from the Jupiter-family comet Wild 2, returned to Earth by NASAs Stardust mission. This object shows characteristics of a type II chondrule that fo
Comet 103P/Hartley~2 was observed on Nov. 1-6, 2010, coinciding with the fly-by of the space probe EPOXI. The goal was to connect the large scale phenomena observed from the ground, with those at small scale observed from the spacecraft. The comet sh