ﻻ يوجد ملخص باللغة العربية
We discuss a series of observations of the black hole candidate GX 339-4 in low luminosity, spectrally hard states. We present spectral analysis of three separate archival Advanced Satellite for Cosmology and Astrophysics (ASCA) data sets and eight separate Rossi X-ray Timing Explorer (RXTE) data sets. Three of the RXTE observations were strictly simultaneous with 843 MHz and 8.3-9.1 GHz radio observations. All of these observations have (3-9 keV) flux approximately < 10^{-9} ergs s^{-1} cm^{-2}. The ASCA data show evidence for an 6.4 keV Fe line with equivalent width 40 eV, as well as evidence for a soft excess that is well-modeled by a power law plus a multicolor blackbody spectrum with peak temperature 150-200 eV. The RXTE data sets also show evidence of an Fe line with equivalent widths 20-140 eV. Reflection models show a hardening of the RXTE spectra with decreasing X-ray flux; however, these models do not exhibit evidence of a correlation between the photon index of the incident power law flux and the solid angle subtended by the reflector. `Sphere+disk Comptonization models and Advection Dominated Accretion Flow (ADAF) models also provide reasonable descriptions of the RXTE data. The former models yield coronal temperatures in the range 20-50 keV and optical depths of tau ~ 3. The model fits to the X-ray data, however, do not simultaneously explain the observed radio properties. The most likely source of the radio flux is synchrotron emission from an extended outflow of size greater than O(10^7 GM/c^2).
GX 339-4 has been observed by BeppoSAX twice in spring 1997 as part of a longer monitoring program. The source was close to the highest levels (50 mCrab) of the extended low state (as measured by the XTE ASM during the last 2 years). Its spectrum was
We use simultaneous Swift and RXTE observations of the black hole binary GX 339-4 to measure the inner radius of its accretion disk in the hard state down to 0.4% L_{Edd} via modeling of the thermal disk emission and the relativistically broadened ir
We have analyzed 200 Rossi X-ray Timing Explorer observations of the black hole candidate GX 339--4, all from the bright hard state periods between 1996 and 2005. Purpose of our study is to investigate the radiation mechanisms in the hard state of GX
Galactic black hole binaries produce powerful outflows with emit over almost the entire electromagnetic spectrum. Here, we report the first detection with the Herschel observatory of a variable far-infrared source associated with the compact jets of
Black hole X-ray binaries show signs of non-thermal emission in the optical/near-infrared range. We analyze the optical/near-infrared SMARTS data on GX339$-$4 over the 2002--2011 period. Using the soft state data, we estimate the interstellar extinct