ﻻ يوجد ملخص باللغة العربية
We describe the 2dF Galaxy Redshift Survey (2dFGRS), and the current status of the observations. In this exploratory paper, we apply a Principal Component Analysis to a preliminary sample of 5869 galaxy spectra and use the two most significant components to split the sample into five spectral classes. These classes are defined by considering visual classifications of a subset of the 2dF spectra, and also by comparing to high quality spectra of local galaxies. We calculate a luminosity function for each of the different classes and find that later-type galaxies have a fainter characteristic magnitude, and a steeper faint-end slope. For the whole sample we find M*=-19.7 (for Omega=1, H_0=100 km/sec/Mpc), alpha=-1.3, phi*=0.017. For class 1 (`early-type) we find M*=-19.6, alpha=-0.7, while for class 5 (`late-type) we find M*=-19.0, alpha=-1.7. The derived 2dF luminosity functions agree well with other recent luminosity function estimates.
We combine the 2MASS extended source catalogue and the 2dFGRS to produce an IR selected galaxy catalogue with 17,173 measured redshifts. We use this extensive dataset to estimate the J and K-band galaxy luminosity functions. The LFs are fairly well f
We use the 2dF Galaxy Redshift Survey to measure the dependence of the bJ-band galaxy luminosity function on large-scale environment, defined by density contrast in spheres of radius 8h-1Mpc, and on spectral type, determined from principal component
We investigate the dependence of galaxy clustering on luminosity and spectral type using the 2dF Galaxy Redshift Survey (2dFGRS). Spectral types are assigned using the principal component analysis of Madgwick et al. We divide the sample into two broa
We use more than 110500 galaxies from the 2dF galaxy redshift survey (2dFGRS) to estimate the b_J-band galaxy luminosity function at redshift z=0, taking account of evolution, the distribution of magnitude measurement errors and small corrections for