ﻻ يوجد ملخص باللغة العربية
We present a study of the globular cluster systems of two edge-on spiral galaxies, NGC4565 and NGC5907, from WFPC2 images in the F450W and F814W filters. The globular cluster systems of both galaxies appear to be similar to the Galactic globular cluster system. In particular, we derive total numbers of globular clusters of N_{GC}(4565)= 204+/-38 {+87}{-53} and N_{GC}(5907)=170+/-41 {+47}{-72} (where the first are statistical, the second potential systematic errors) for NGC4565 and NGC5907, respectively. This determination is based on a comparison to the Milky Way system, for which we adopt a total number of globular clusters of 180+/-20. The specific frequency of both galaxies is S_N~0.6: indistinguishable from the value for the Milky Way. The similarity in the globular cluster systems of the two galaxies is noteworthy since they have significantly different thick disks and bulge-to-disk ratios. This would suggest that these two components do not play a major role in the building up of a globular cluster system around late-type galaxies.
We have observed warm molecular hydrogen in two nearby edge-on disk galaxies, NGC 4565 and NGC 5907, using the Spitzer high-resolution infrared spectrograph. The 0-0 S(0) 28.2 micron and 0-0 S(1) 17.0 micron pure rotational lines were detected out to
We combine new dust continuum observations of the edge-on spiral galaxy NGC 4565 in all Herschel/SPIRE (250, 350, 500 micron) wavebands, obtained as part of the Herschel Reference Survey, and a large set of ancillary data (Spitzer, SDSS, GALEX) to an
Cosmic-ray electrons (CREs) originating from the star-forming discs of spiral galaxies frequently form extended radio haloes that are best observable in edge-on galaxies. For the present study we selected two nearby edge-on galaxies from the CHANG-ES
We present 21-cm observations and models of the neutral hydrogen in NGC 4565, a nearby, edge-on spiral galaxy, as part of the Westerbork Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey. These models provide insight concerning both the morpholog
Cosmic rays play a pivotal role in launching galactic winds, particularly in quiescently star-forming galaxies where the hot gas alone is not sufficient to drive a wind. Except for the Milky Way, not much is known about the transport of cosmic rays i