ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematics, Abundances, and Origin of Brightest Cluster Galaxies

118   0   0.0 ( 0 )
 نشر من قبل David Carter
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present kinematic parameters and absorption line strengths for three brightest cluster galaxies, NGC 6166, NGC 6173 and NGC 6086. We find that NGC 6166 has a velocity dispersion profile which rises beyond 20 arcsec from the nucleus, with a halo velocity dispersion in excess of 400 km/s. All three galaxies show a positive and constant h4 Hermite moment. The rising velocity dispersion profile in NGC 6166 thus indicates an increasing mass-to-light ratio. Rotation is low in all three galaxies, and NGC 6173 and NGC 6086 show possible kinematically decoupled cores. All three galaxies have Mg2 gradients similar to those found in normal bright ellipticals, which are not steep enough to support simple dissipative collapse models, but these could be accompanied by dissipationless mergers which would tend to dilute the abundance gradients. The [Mg/Fe] ratios in NGC 6166 and NGC 6086 are higher than that in NGC 6173, and if NGC 6173 is typical of normal bright ellipticals, this suggests that cDs cannot form from late mergers of normal galaxies.

قيم البحث

اقرأ أيضاً

72 - S. Brough 2007
We present an examination of the kinematics and stellar populations of a sample of 3 Brightest Group Galaxies (BGGs) and 3 Brightest Cluster Galaxies (BCGs) in X-ray groups and clusters. We have obtained high signal-to-noise Gemini/GMOS (Gemini South Multi-Object Spectrograph) long-slit spectra of these galaxies and use Lick indices to determine ages, metallicities and alpha-element abundance ratios out to at least their effective radii. We find that the BGGs and BCGs have very uniform masses, central ages and central metallicities. Examining the radial dependence of their stellar populations, we find no significant velocity dispersion, age, or alpha-enhancement gradients. However, we find a wide range of metallicity gradients, suggesting a variety of formation mechanisms. The range of metallicity gradients observed is surprising given the homogeneous environment these galaxies probe and their uniform central stellar populations. However, our results are inconsistent with any single model of galaxy formation and emphasize the need for more theoretical understanding of both the origins of metallicity gradients and galaxy formation itself. We postulate two possible physical causes for the different formation mechanisms.
156 - H. Andernach 2006
We identified Brightest Cluster Members (BCM) on DSS images of 1083 Abell clusters, derived their individual and host cluster redshifts from literature and determined the BCM ellipticity. Half the BCMs move at a speed higher than 37 % of the cluster velocity dispersion sigma_{cl}, suggesting that most BCMs are part of substructures falling into the main cluster. Both, the BCMs velocity offset in units of sigma_{cl}, and BCM ellipticity, weakly decrease with cluster richness.
97 - D. J. Burke 2000
The K-band Hubble diagram of Brightest Cluster Galaxies (BCGs) is presented for a large, X-ray selected cluster sample extending out to z = 0.8. The controversy over the degree of BCG evolution is shown to be due to sample selection, since the BCG lu minosity depends upon the cluster environment. Selecting only the most X-ray luminous clusters produces a BCG sample which shows, under the assumption of an Einstein-de Sitter cosmology, significantly less mass growth than that predicted by current semi-analytic galaxy formation models, and significant evidence of any growth only if the dominant stellar population of the BCGs formed relatively recently (z <= 2.6).
Context. We investigate the stellar population and the origin of diffuse light around brightest cluster galaxies. Aims. We study the stellar population of the dynamically hot stellar halo of NGC 3311, the brightest galaxy in the Hydra I cluster, an d that of photometric substructures in the diffuse light to constrain the origin of these components. Methods. We analyze absorption lines in medium-resolution, long-slit spectra in the wavelength range 4800-5800 angstrom obtained with FORS2 at the Very Large Telescope. We measure the equivalent width of Lick indices out to 20 kpc from the center of NGC 3311 and fit them with stellar population models that account for the [alpha/Fe] overabundance. Results. Stars in the dynamically hot halo of NGC 3311 are old (age > 13 Gyr), metal-poor ([Z/H] ~ -0.35), and alpha-enhanced ([alpha/Fe] ~ 0.48). Together with the high velocity dispersion, these measurements indicate that the stars in the halo were accreted from the outskirts of other early-type galaxies, with a possible contribution from dwarf galaxies. We identify a region in the halo of NGC 3311 associated with a photometric substructure where the stellar population is even more metal-poor ([Z/H] ~ -0.73). In this region, our measurements are consistent with a composite stellar population superposed along the line of sight, consisting of stars from the dynamically hot halo of NGC 3311 and stars stripped from dwarf galaxies. The latter component contributes < 28% to the local surface brightness. Conclusions. The build-up of diffuse light around NGC 3311 is on-going. Based on the observed stellar population properties, the dominant part of these stars may have come from the outskirts of bright early-type galaxies, while stars from stripped dwarf galaxies are presently being added.
Observations of 170 local ($zlesssim0.08$) galaxy clusters in the northern hemisphere have been obtained with the Wendelstein Telescope Wide Field Imager (WWFI). We correct for systematic effects such as point-spread function broadening, foreground s tar contamination, relative bias offsets, and charge persistence. Background inhomogeneities induced by scattered light are reduced down to $Delta {rm SB} > 31~g$ mag arcsec$^{-2}$ by large dithering and subtraction of night-sky flats. Residual background inhomogeneities brighter than ${rm SB}_{sigma}< 27.6~g$ mag arcsec$^{-2}$ caused by galactic cirrus are detected in front of 23% of the clusters. However, the large field of view allows discrimination between accretion signatures and galactic cirrus. We detect accretion signatures in the form of tidal streams in 22%, shells in 9.4%, and multiple nuclei in 47% of the Brightest Cluster Galaxies (BCGs) and find two BCGs in 7% of the clusters. We measure semimajor-axis surface brightness profiles of the BCGs and their surrounding Intracluster Light (ICL) down to a limiting surface brightness of ${rm SB} = 30~g$ mag arcsec$^{-2}$. The spatial resolution in the inner regions is increased by combining the WWFI light profiles with those that we measured from archival textit{Hubble Space Telescope} images or deconvolved WWFI images. We find that 71% of the BCG+ICL systems have surface brightness (SB) profiles that are well described by a single Sersic (SS) function, whereas 29% require a double Sersic (DS) function to obtain a good fit. We find that BCGs have scaling relations that differ markedly from those of normal ellipticals, likely due to their indistinguishable embedding in the ICL.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا