ﻻ يوجد ملخص باللغة العربية
For the second time in 27 years a bright transient X-ray source has been detected coincident with the globular cluster NGC 6440. It was found to be active in August, 1998, with the Wide Field Camera and the narrow field instruments on the BeppoSAX spacecraft, and with the All-Sky Monitor and the Proportional Counter Array on the RossiXTE spacecraft. Four X-ray bursts were detected, at least one of which shows the characteristics of a thermonuclear flash on a neutron star, in analogy with some ~20 optically identified low-mass X-ray binaries. The broad-band spectrum is hard as is common among low-mass X-ray binaries of lower luminosity (>~10^37 erg/s) and can be explained by a Comptonized model. During the burst the >30 keV emission brightened, consistent with part of the burst emission being Compton up scattered within ~10^11 cm.
With the observations from textit{Rossi X-ray Timing Explorer}, we search and study the X-ray bursts of accreting millisecond X-ray pulsar SAX~J1748.9-2021 during its 2010 outburst. We find 13 X-ray bursts, including 12 standard type-uppercaseexpanda
We report the discovery of the second accreting millisecond X-ray pulsar (AMXP) in the globular cluster NGC 6440. Pulsations with a frequency of 205.89 Hz were detected with the Rossi X-Ray Timing Explorer on August 30th, October 1st and October 28th
We report on the serendipitous discovery of a 442-Hz pulsar during a Rossi X-ray Timing Explorer (RXTE) observation of the globular cluster NGC 6440. The oscillation is detected following a burst-like event which was decaying at the beginning of the
The globular cluster NGC 6440 is known to harbor a bright neutron-star X-ray transient. We observed the globular cluster with Chandra on two occasions when the bright transient was in its quiescent state in July 2000 and June 2003 (both observations
We present a phase-coherent timing analysis of the intermittent accreting millisecond pulsar SAX J1748.9-2021. A new timing solution for the pulsar spin period and the Keplerian binary orbital parameters was achieved by phase connecting all episodes