ترغب بنشر مسار تعليمي؟ اضغط هنا

HST FOC spectroscopy of the NLR of NGC 4151. I. Gas kinematics

63   0   0.0 ( 0 )
 نشر من قبل Claudia Winge
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results from a detailed kinematic analysis of both ground-based, and Hubble Space Telescope/Faint Object Camera long-slit spectroscopy at sub-arcsec spatial resolution, of the narrow-line region of NGC 4151. In agreement with previous work, the extended emission gas (R > 4) is found to be in normal rotation in the galactic plane, a behaviour that we were able to trace even across the nuclear region, where the gas is strongly disturbed by the interaction with the radio jet, and connects smoothly with the large scale rotation defined by the neutral gas emission. The HST data, at 0.029 spatial resolution, allow us for the first time to truly isolate the kinematic behaviour of the individual clouds in the inner narrow-line region. We find that, underlying the perturbations introduced by the radio ejecta, the general velocity field can still be well represented by planar rotation down to a radius of ~ 0.5 (30 pc), distance at which the rotation curve has its turnover. The most striking result that emerges from our analysis is that the galaxy potential derived fitting the rotation curve changes from a dark halo at the ENLR distances to dominated by the central mass concentration in the NLR, with an almost Keplerian fall-off in the 1< R < 4 interval. The observed velocity of the gas at 0.5 implies a mass of M ~ 10E9 M(sol) within the inner 60 pc. The presence of a turnover in the rotation curve indicates that this central mass concentration is extended. The first measured velocity point (outside the region saturated by the nucleus) would imply an enclosed mass of ~ 5E7 M(sol) within R ~ 0.15 (10 pc) which represents an upper limit to any nuclear point mass.



قيم البحث

اقرأ أيضاً

Narrow-band imaging of the nuclear region of NGC 4151 with the Hubble Space Telescope is presented. The filter bandpasses isolate line emission in various high velocity ranges in several ions. Slitless and long-slit spectra of the region with the Spa ce Telescope Imaging Spectrograph also indicate the locations of high velocity gas. These emission regions are faint and are interspersed among the bright emission clouds seen in direct images. They have radial velocities up to 1400 km/s relative to the nucleus, and are found in both approach and recession on both sides of the nucleus. This contrasts strongly with the bright emission line clouds which have been discussed previously as showing bidirectional outflow with velocities within 400 km/s of the nucleus. We discuss the possible connections of the high velocity material with the radio jet and the nuclear radiation.
We present high-sensitivity eMERLIN radio images of the Seyfert galaxy NGC 4151 at 1.5 GHz. We compare the new eMERLIN images to those from archival MERLIN observations in 1993 to determine the change in jet morphology in the 22 years between observa tions. We report an increase by almost a factor of 2 in the peak flux density of the central core component, C4, thought to host the black hole, but a probable decrease in some other components, possibly due to adiabatic expansion. The core flux increase indicates an AGN which is currently active and feeding the jet. We detect no significant motion in 22 years between C4 and the component C3, which is unresolved in the eMERLIN image. We present a spectral index image made within the 512 MHz band of the 1.5 GHz observations. The spectrum of the core, C4, is flatter than that of other components further out in the jet. We use HST emission line images (H$alpha$, [O III] and [O II]) to study the connection between the jet and the emission line region. Based on the changing emission line ratios away from the core and comparison with the eMERLIN radio jet, we conclude that photoionisation from the central AGN is responsible for the observed emission line properties further than 4 (360 pc) from the core, C4. Within this region, several evidences (radio-line co-spatiality, low [O III]/H$alpha$ and estimated fast shocks) suggest additional ionisation from the jet.
146 - Daniel A. Evans 2009
We present initial results from a new 440-ks Chandra HETG GTO observation of the canonical Seyfert 2 galaxy NGC 1068. The proximity of NGC 1068, together with Chandras superb spatial and spectral resolution, allow an unprecedented view of its nucleus and circumnuclear NLR. We perform the first spatially resolved high-resolution X-ray spectroscopy of the `ionization cone in any AGN, and use the sensitive line diagnostics offered by the HETG to measure the ionization state, density, and temperature at discrete points along the ionized NLR. We argue that the NLR takes the form of outflowing photoionized gas, rather than gas that has been collisionally ionized by the small-scale radio jet in NGC 1068. We investigate evidence for any velocity gradients in the outflow, and describe our next steps in modeling the spatially resolved spectra as a function of distance from the nucleus.
We have analysed Chandra/High Energy Transmission Gratings spectra of the X-ray emission line gas in the Seyfert galaxy NGC 4151. The zeroth order spectral images show extended H- and He-like O and Ne, up to a distance $r sim$ 200 pc from the nucleus . Using the 1st order spectra, we measure an average line velocity $sim -230$ km s$^{-1}$, suggesting significant outflow of X-ray gas. We generated Cloudy photoionisation models to fit the 1st order spectra. We required three emission-line components, with column density, log$N_{H}$, and ionisation parameter, log$U$, of 22.5/1.0, 22.5/0.19, and 23.0/-0.50, respectively. To estimate the total mass of ionised gas and the mass outflow rates, we applied the model parameters to fit the zeroth order emission-line profiles of Ne~IX and Ne~X. We determined the total mass of $approx 5.4 times$ 10$^{5}$ M_sun. Assuming the same kinematic profile as that for the [O~III] gas, the peak X-ray mass outflow rate was $approx 1.8$ M_sun yr$^{-1}$, at $r sim 150$ pc. The total mass and mass outflow rates are similar to those determined using [O~III], implying that the X-ray gas is a major outflow component. However, unlike the optical outflows, the X-ray outflow rate does not drop off at $r >$ 100 pc, which suggests that it may have a greater impact on the host galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا