ترغب بنشر مسار تعليمي؟ اضغط هنا

Global cluster morphology and its evolution: X-ray data vs CDM, LCDM and mixed models

43   0   0.0 ( 0 )
 نشر من قبل Simona Ghizzardi
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Valdarnini




اسأل ChatGPT حول البحث

The global structure of galaxy clusters and its evolution are tested within a large set of TREESPH simulations, so to allow a fair statistical comparison with available X-ray data. Structure tests are based on the power ratios, introduced by Buote & Tsai. Cosmological models considered are CDM, LCDM (Omega_L=0.7) and CHDM (1 mass.neu., Omega_h = 0.2). All models are normalized to provide a fair number density of clusters. For each model we run a P3M simulation in a large box, where we select the most massive 40 clusters. Going back to the initial redshift we run a hydro-TREESPH simulation for each of them. In this way we perform a statistical comparison of the global morphology of clusters, for each cosmological model, with ROSAT data, using Student t-test, F-test and K-S test. The last test and its generalization to 2--D distributions are also used to compare the joint distributions of 2 or 3 power ratios. We find that, using DM distribution, instead of gas, as done by some authors, leads to biased results, as baryons are distributed in a less structured way than DM. We also find that the cosmological models considered have different behaviours in these tests: LCDM has the worst performance. CDM and our CHDM have similar scores. The general trend of power ratio distributions is already fit by these models, but a further improvement is expected either from a different DM mix or a non-flat CDM model.



قيم البحث

اقرأ أيضاً

The morphology and the distribution of material observed in SNRs reflect the interaction of the SN blast wave with the ambient environment, the physical processes associated with the SN explosion and the internal structure of the progenitor star. IC 443 is a MM SNR located in a quite complex environment: it interacts with a molecular cloud in the NW and SE areas and with an atomic cloud in the NE. In this work we aim at investigating the origin of the complex morphology and multi-thermal X-ray emission observed in SNR IC 443, through the study of the effect of the inhomogeneous ambient medium in shaping its observed structure, and the exploration of the main parameters characterizing the remnant. We developed a 3D HD model for IC 443, which describes the interaction of the SNR with the environment, parametrized in agreement with the results of the multi-wavelength data analysis. We performed an ample exploration of the parameter space describing the initial blast wave and the environment, and the surrounding clouds. From the simulations, we synthesized the X-ray emission maps and spectra and compared them with actual X-ray data collected by XMM-Newton. Our model explains the origin of the complex X-ray morphology of SNR IC 443 in a natural way, being able to reproduce, for the first time, most of the observed features, including the centrally-peaked X-ray morphology (characteristic of MM SNRs) when considering the origin of the explosion at the position where the PWN CXOU J061705.3+222127 was at the time of the explosion. In the model which best reproduces the observations, the mass of the ejecta and the energy of the explosion are $sim 7 M_odot$ and $sim10^{51}$ erg, respectively. From the exploration of the parameter space, we found that the density of the clouds is $n>300$ cm$^{-3}$ and that the age of SNR IC 443 is $sim8000$ yr.
If the hot, X-ray emitting gas in rich clusters forms a fair sample of the universe (as in Cold Dark Matter (CDM) models), and the universe is at the critical density, $Omega_T = 1$, then the data appears to imply a baryon fraction, $Omega_{b,x}$ ($O mega_{b,x}equiv Omega_b$ derived from X-ray cluster data), larger than that predicted by Big Bang Nucleosynthesis (BBN). While various other systematic effects such as clumping can lower $Omega_{b,x}$, in this paper we use an elementary analysis to show that a simple admixture of Hot Dark Matter (HDM, low mass neutrinos) with CDM to yield mixed dark matter shifts $Omega_{b,x}$ down so that significant overlap with $Omega_b$ from BBN can occur for $H_0 lsim 75;{rm km/sec/Mpc}$, even without invoking the possible aforementioned effects. The overlap interval is slightly larger for lower mass neutrinos since fewer cluster on the scale of the hot X-ray gas. We illustrate this result quantitatively in terms of a simple isothermal model. More realistic velocity dispersion profiles, with less centrally-peaked density profiles, imply that fewer neutrinos are trapped and, thus, further increase the interval of overlap. However, we also note that if future observations of light element abundances find that $Omega_b h^2 lsim 0.018$, the range of concordance in this simple mixed dark matter model vanishes.
64 - R. L. Shelton , K. D. Kuntz , 2004
As with other mixed morphology remnants, W44s projected center is bright in thermal X-rays. It has an obvious radio shell, but no discernable X-ray shell. X-ray bright knots dot W44s image. The Chandra data show that the remnants hot, bright projecte d center is metal-rich and that the bright knots are regions of comparatively elevated elemental abundances. The neon abundance is elevated, suggesting that the center is rich in ejecta. Furthermore, some of the emitting iron atoms appear to be underionized with respect to the other ions, providing the first X-ray evidence for dust destruction in a supernova remnant. We use the Chandra data to test the following explanations for W44s X-ray bright center: 1.) entropy mixing from thermal conduction or bulk mixing, 2.) cloud evaporation, and 3.) a metallicity gradient, possibly due to dust destruction and ejecta enrichment. In these tests, we assume that the remnant has evolved beyond the adiabatic evolutionary stage, which explains the X-ray dimness of the shell. The entropy mixed model spectrum was found to be a good match to the Chandra spectrum. The bright knots have similar levels of ionization as the surrounding regions, challenging the evaporating clouds model. While both of these models are known to predict centrally bright X-ray morphologies, their predictions fall short of the observed brightness gradient. The resulting brightness gap can be largely filled in by emission from the extra metals in and near the remnants projected center. The preponderance of evidence suggests that W44s remarkable morphology can be attributed to dust destruction and ejecta enrichment within an entropy mixed, adiabatic phase supernova remnant.
To investigate the relationships between dynamical status and other important characteristics of galaxy clusters, we conducted a study of X-ray cluster morphology using a sample of 101 clusters at redshift z=0.05-1 taken from the Chandra archive. The X-ray morphology is quantitatively characterized by a series of objectively measured simple statistics of the X-ray surface brightness distribution, which are designed to be robust against variations of image quality caused by various exposure times and various cluster redshifts. We found: (1) The distorted and non-distorted clusters occupy well-defined loci in the L-T plane, demonstrating the measurements of the global luminosity and temperature for distorted clusters should be interpreted with caution, or alternatively, a rigorous morphological characterization is necessary when we use a sample of clusters with heterogeneous morphological characteristics to investigate the L-T or other related scaling relations. (2) Ellipticity and Off-center show no evolutionary effects between high and low redshift cluster subsets, while there may be a hint of weak evolutions for the Concentration and Asymmetry, in such a way that high-z clusters show more distorted morphology. (3) No correlation is found between X-ray morphology and X-ray luminosity or X-ray morphology and X-ray temperature of clusters, implying that interaction of clusters may not enhance or decrease the luminosity or temperature of clusters for extended period of time.
124 - J. Patrick Henry 2001
Whether the X-ray luminosities of clusters of galaxies evolve has been a contentious issue for over ten years. However, the data available to address this issue have improved dramatically as cluster surveys from the ROSAT archive near completion. The re are now three samples of nearby clusters and seven distant cluster samples. We present a uniform analysis of four of the distant cluster samples. Each exhibits highly statistically significant luminosity evolution. We combine three of these samples to measure the high redshift cluster X-ray luminosity function with good statistics that shows the nature of the evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا