ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrostatics of the Galactic Halo

74   0   0.0 ( 0 )
 نشر من قبل Juergen Kerp
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated a hydrostatic equilibrium model of the Milky Way following Parker (1966), to constrain the large scale properties of the interstellar medium. In our approach we found an excellent agreement between our simple hydrostatic equilibrium model of the Milky Way and the recent all-sky survey data rangeing from the gamma-ray to the radio regime. On large scales the galactic disk-halo system is found to be stable against Parker-instabilities. Pressure support from the Galactic disk is essential to stabilise the halo. In particular the diffuse ionised gas layer acts as a disk-halo interface. Assuming that the distribution of the soft X-ray emitting plasma traces the gravitational potential, we derived the dark matter content of the Milky Way to be about M ~ 2.8 10^11 M_o. Our findings are consistent with the rotation curve of the Galaxy.



قيم البحث

اقرأ أيضاً

We have used RR Lyrae and Blue HB stars as tracers of the old Galactic halo, in order to study the halo structure and the galactic rotation as a function of height above the plane. Our sample includes 40 RR Lyrae and 80 BHB stars that are about 2 to 15 kpc above the plane, in a roughly 250 sq. deg. area around the North Galactic Pole (NGP). We use proper motions (derived from the GSC-II database) and radial velocities to determine the rotation of the halo. From the whole sample the motion appears to be significantly more retrograde than the samples in the solar neighborhood, confirming Majewski (1992) results and our own preliminary results based on 1/3 the present sample (Kinman et al. 2003; Spagna et al. 2003). However, the better statistics has now revealed the likely existence of two components, whose characteristics need an accurate analysis of systematic errors on the proper motions in order to be assessed in detail.
Recent observations of microlensing events in the Large Magellanic Cloud suggest that a sizeable fraction of the galactic halo is in form of MACHOs with mass less than abou 0.1 M_{odot}. Here we argue that molecular clouds (mainly H_2) located in the galactic halo can contribute substantially to its total mass. We outline a scenario in which dark clusters of MACHOs and molecular clouds naturally form in the halo at large galactocentric distances. Possible ways of detecting MACHOs via infrared emission and molecular clouds via the induced gamma-ray flux are discussed. Molecular clouds located in the M31 dark halo could be discovered through cosmic background radiation (CBR) anisotropies or emission lines in the microwave band.
We explore differences in Galactic halo kinematic properties derived from two commonly employed Galactic potentials: the St$ddot{a}$ckel potential and the default Milky Way-like potential used in the Galpy package (MWPotential2014), making use of sta rs with available metallicities, radial velocities, and proper motions from Sloan Digital Sky Survey Data Release 12. Adopting the St$ddot{a}$ckel potential, we find that the shape of the metallicity distribution function (MDF) and the distribution of orbital rotation abruptly change at $Z_{rm max}$ = 15 kpc and $r_{rm max}$ = 30 kpc (where $Z_{rm max}$ and $r_{rm max}$ are the maximum distances reached by a stellar orbit from the Galactic plane and from the Galactic center, respectively), indicating that the transition from dominance by the inner-halo stellar population to the outer-halo population occurs at those distances. Stars with $Z_{rm max}$ $>$ 15 kpc show an average retrograde motion of $V_{rm phi}$ = $-$60 km s$^{-1}$, while stars with $r_{rm max}$ $>$ 30 kpc exhibit an even larger retrograde value, $V_{rm phi}$ = $-$150 km s$^{-1}$. This retrograde signal is also confirmed using the sample of stars with radial velocities obtained by $Gaia$ Data Release 2, assuming the St$ddot{a}$ckel potential. In comparison, when using the shallower Galpy potential, a noticeable change in the MDF occurs only at $Z_{rm max}$ = 25 kpc, and a much less extreme retrograde motion is derived. This difference arises because stars with highly retrograde motions in the St$ddot{a}$ckel potential are unbound in the shallower Galpy potential, and stars with lower rotation velocities reach larger $Z_{rm max}$ and $r_{rm max}$. The different kinematic characteristics derived from the two potentials suggest that the nature of the adopted Galactic potential can strongly influence interpretation of the properties of the Galactic halo.
230 - Zhen Yuan 2019
We search for dynamical substructures in the LAMOST DR3 very metal-poor (VMP) star catalog. After cross-matching with Gaia DR2, there are 3300 VMP stars with available high-quality astrometric information that have halo-like kinematics. We apply a me thod based on self-organizing maps to find groups clustered in the 4D space of orbital energy and angular momentum. We identify 57 dynamically tagged groups, which we label DTG-1 to DTG-57. Most of them belong to existing substructures in the nearby halo, such as the $Gaia$ Sausage or Sequoia. The stream identified by Helmi et al. is recovered, but the two disjoint portions of the substructure have distinct dynamical properties. The very retrograde substructure Rg5 found previously by Myeong et al. is also retrieved. We report 6 new DTGs with highly retrograde orbits, 2 with very prograde orbits, and 12 with polar orbits. By mapping other datasets (APOGEE halo stars, and catalogs of r-process-enhanced and CEMP stars) onto the trained neuron map, we can associate stars with detailed chemical abundances to the DTGs, and look for associations with chemically peculiar stars. The highly eccentric $Gaia$ Sausage groups contain representatives both of debris from the satellite itself (which is $alpha$-poor) and the Splashed Disk, sent up into eccentric halo orbits from the encounter (and is $alpha$-rich). The new prograde substructures also appear to be associated with the Splashed Disk. The DTGs belonging to the $Gaia$ Sausage host two relatively metal-rich $r$-II stars and six CEMP stars in different sub-classes, consistent with the idea that the $Gaia$ Sausage progenitor is a massive dwarf galaxy. Rg5 is dynamically associated with two highly $r$-process-enhanced stars with [Fe/H] $sim -$3. This finding indicates that its progenitor might be an ultra-faint dwarf galaxy that has experienced $r$-process enrichment from neutron star mergers.
In a step toward understanding the origin of the Galactic Halo, we have reexamined Type II Cepheids (T2C) in the field with new input from the second data release (DR2) of Gaia. For 45 T2C with periods from 1 to 20 days, parallaxes, proper motions, a nd [Fe/H] values are available for 25 stars. Only 5 show [Fe/H] < -1.5, while the remaining stars show thick disk kinematics and [Fe/H] > -0.90. We have compared the T2C stars of the field with their cousins in the globular clusters of the Halo and found that the globular clusters with T2C stars show metallicities and kinematics of a pure Halo population. The globulars may have formed during the overall collapse of the Galaxy while the individual thick disk T2C stars may have been captured from small systems that self-enriched prior to capture. The relationship of these two populations to the micro-galaxies currently recognized as surrounding the Galaxy is unclear.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا