ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematic Effects of Tidal Interaction on Galaxy Rotation Curves

100   0   0.0 ( 0 )
 نشر من قبل Elizabeth J. Barton
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use self-consistent N-body models, in conjunction with models of test particles moving in galaxy potentials, to explore the initial effects of interactions on the rotation curves of spiral galaxies. Using nearly self-consistent disk/bulge/halo galaxy models (Kuijken & Dubinski 1995), we simulate the first pass of galaxies on nearly parabolic orbits; we vary orbit inclinations, galaxy halo masses and impact parameters. For each simulation, we mimic observed rotation curves of the model galaxies. Transient interaction-induced features of the curves include distinctly rising or falling profiles at large radii and pronounced bumps in the central regions. Remarkably similar features occur in our statistical sample of optical emission-line rotation curves of spiral galaxies in tight pairs and n-tuples.


قيم البحث

اقرأ أيضاً

Cosmological simulations of structure formation are invaluable to study the evolution of the Universe and the development of galaxies in it successfully reproducing many observations in the context of the cosmological paradigm $Lambda$CDM. However, t here are remarkable discrepancies with observations that are a matter of debate. One of the most recently reported is the diversity of shapes in the rotation curves of dwarf galaxies in the local Universe which is in contrast to the apparent homogeneity of rotation curves in cosmological hydrodynamic simulations. Previous studies on similar problems have shown that sometimes can be alleviated by accounting for the impact of observational effects in the comparison. For this reason, in this work we present a set of controlled experiments to measure the impact that some systematic effects, associated with modeling the observation process in a realistic way, have on the diversity of synthetic rotation curves. Our results demonstrate that factors such as spectral power, spatial resolution and inclination angle, can naturally induce noticeable fluctuations on the shape of the rotation curves, reproducing up to $47%$ of the diversity reported in the observations. This is remarkable, especially considering that we limited the sample to highly-symmetric disks simulated in isolation. This shows that a more realistic modeling of synthetic rotation curves may alleviate the reported tension between simulations and observations, without posing a challenge to the standard cosmological model of cold dark matter.
The frequently observed lopsidedness of the distribution of stars and gas in disc galaxies is still considered as a major problem in galaxy dynamics. It is even discussed as an imprint of the formation history of discs and the evolution of baryons in dark matter haloes. Here, we analyse a selected sample of 70 galaxies from the Westerbork HI Survey of Spiral and Irregular Galaxies. The HI data allow us to follow the morphology and the kinematics out to very large radii. In the present paper, we present the rotation curves and study the kinematic asymmetry. We extract the rotation curves of receding and approaching sides separately and show that the kinematic behaviour of disc galaxies can be classified by five different types: symmetric velocity fields where the rotation curves of receding and approaching sides are almost identical; global distortions where the rotation velocities of receding and approaching side have an offset which is constant with radius; local distortions which lead to large deviations in the inner and negligible deviations in the outer parts (and vice versa); and distortions which split the galaxies into two kinematic systems, visible in the different behaviour of the rotation curves of receding and approaching sides, which leads to a crossing and a change in side. The kinematic lopsidedness is measured from the maximum rotation velocities, averaged over the plateau of the rotation curves. This gives a good estimate of global lopsidedness in the outer parts of the sample galaxies. We find that the mean value of the perturbation parameter denoting the lopsided potential as obtained from the kinematic data is 0.056. 36% of all sample galaxies are globally lopsided, which can be interpreted as the disc responding to a halo that was distorted by a tidal encounter. In Paper II, we study the morphological lopsidedness for the same sample of galaxies.
We propose a new formula to explain circular velocity profiles of spiral galaxies obtained from the Starobinsky model in Palatini formalism. It is based on the assumption that the gravity can be described by two conformally related metrics: one of th em is responsible for the measurement of distances, while the other so-called dark metric, is responsible for a geodesic equation and therefore can be used for the description of the velocity profile. The formula is tested against a subset of galaxies taken from the HI Nearby Galaxy Survey (THINGS).
We examine the circular velocity profiles of galaxies in {Lambda}CDM cosmological hydrodynamical simulations from the EAGLE and LOCAL GROUPS projects and compare them with a compilation of observed rotation curves of galaxies spanning a wide range in mass. The shape of the circular velocity profiles of simulated galaxies varies systematically as a function of galaxy mass, but shows remarkably little variation at fixed maximum circular velocity. This is especially true for low-mass dark matter-dominated systems, reflecting the expected similarity of the underlying cold dark matter haloes. This is at odds with observed dwarf galaxies, which show a large diversity of rotation curve shapes, even at fixed maximum rotation speed. Some dwarfs have rotation curves that agree well with simulations, others do not. The latter are systems where the inferred mass enclosed in the inner regions is much lower than expected for cold dark matter haloes and include many galaxies where previous work claims the presence of a constant density core. The cusp vs core issue is thus better characterized as an inner mass deficit problem than as a density slope mismatch. For several galaxies the magnitude of this inner mass deficit is well in excess of that reported in recent simulations where cores result from baryon-induced fluctuations in the gravitational potential. We conclude that one or more of the following statements must be true: (i) the dark matter is more complex than envisaged by any current model; (ii) current simulations fail to reproduce the effects of baryons on the inner regions of dwarf galaxies; and/or (iii) the mass profiles of inner mass deficit galaxies inferred from kinematic data are incorrect.
A new simple expression for the circular velocity of spiral galaxies is proposed and tested against HI Nearby Galaxy Survey (THINGS) data set. Its accuracy is compared with the one coming from MOND.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا