ﻻ يوجد ملخص باللغة العربية
We report simultaneous observations at 1.2 and 2 mm, with a double channel photometer on the SEST Telescope, of the X-ray cluster RXJ0658-5557 in search for the Sunyaev-Zeldovich (S-Z). The S-Z data were analyzed using the relativistically correct expression for the Comptonization parameter and we find from the detected decrement (2.60 +/- 0.79) ~ 10^{-4}, which is consistent with that computed using the X-ray (ROSAT and ASCA) observations. The uncertainty includes contributions due to statistical uncertainty in the detection and systematics and calibration. The 1.2 {mm} channel data alone gives rise to a larger Comptonization parameter and this result is discussed in terms of contamination from foreground sources and/or dust in the cluster or from a possible systematic effect. We then make use of the combined analysis of the ROSAT and ASCA X-ray satellite observations to determine an isothermal model for the S-Z surface brightness. Since the cluster is asymmetrical and probably in a merging process, models are only approximate. The associated uncertainty can, however, be estimated by exploring a set of alternative models. We then find as the global uncertainty on the Comptonization parameter a factor of 1.3. Combining the S-Z and the X-ray measurements, we determine a value for the Hubble constant. The 2 mm data are consistent with H_0(q_0 = 1/2)= 53^{+38}_{-28} km/s Mpc^{-1}, where the uncertainty is dominated by the uncertainty in models of the X-ray plasma halo.
An observing campaign was devoted to the search for the Sunyaev-Zeldovich (S-Z) effect towards X-ray ROSAT Clusters in the millimetric spectral domain. A double channel (1.2 and 2 {it mm}) photometer was installed at the focus of the 15m Swedish ESO
WMAP observations at mm wavelengths are sensitive to the Sunyaev-Zeldovich effect in galaxy clusters. Among all the objects in the sky, the Virgo cluster is expected to provide the largest integrated signal. Based on models compatible with the X-ray
Studying galaxy clusters through their Sunyaev-Zeldovich (SZ) imprint on the Cosmic Microwave Background has many important advantages. The total SZ signal is an accurate and precise tracer of the total pressure in the intra-cluster medium and of clu
X-ray observations of an entropy floor in nearby groups and clusters of galaxies offer evidence that important non-gravitational processes, such as radiative cooling and/or preheating, have strongly influenced the evolution of the intracluster medium
Using high-resolution microwave sky maps made by the Atacama Cosmology Telescope, we for the first time present strong evidence for motions of galaxy clusters and groups via microwave background temperature distortions due to the kinematic Sunyaev-Ze