ترغب بنشر مسار تعليمي؟ اضغط هنا

The ESO Nearby Abell Cluster Survey: Kinematics of Galaxies in Clusters

196   0   0.0 ( 0 )
 نشر من قبل Andrea Biviano
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We summarize several results based on the velocity data-set for cluster galaxies provided by ENACS (the ESO Nearby Abell Cluster Survey). We describe the distribution of velocity dispersions of a complete sample of rich galaxy clusters, and compare it to the distribution of cluster X-ray temperatures, and with predictions of theoretical models. We then address the issue of the existence of a Fundamental Plane (FP) for rich clusters, first suggested by Schaeffer et al. We confirm the existence of this FP with the ENACS data-set. The cluster FP is different from the FP of elliptical galaxies, and from the virial prediction. Some implications of the cluster FP are discussed. Finally, we describe the phase-space distributions of different populations of cluster galaxies. Different galaxy classes are defined according to their morphological or spectral type, and the presence of emission-lines. Star-forming (late-type) galaxies have a velocity dispersion profile that (in combination with their wider spatial distribution) is suggestive of first infall into the cluster. On the contrary, quiescent (early-type) galaxies show evidence of a dynamically relaxed distribution.



قيم البحث

اقرأ أيضاً

56 - Peter Katgert 2003
We determine the mass profile of an ensemble cluster built from 3056 galaxies in 59 nearby clusters observed in the ESO Nearby Abell Cluster Survey. The mass profile is derived from the distribution and kinematics of the Early-type (elliptical and S0 ) galaxies only, which are most likely to meet the conditions for the application of the Jeans equation. We assume that the Early-type galaxies have isotropic orbits, as supported by the shape of their velocity distribution. The brightest ellipticals (with M_R < -22+5 log h), and the Early-type galaxies in subclusters are excluded from the sample. Application of the Jeans equation yields a non-parametric estimate of the cumulative mass profile M(<r), which has a logarithmic slope of -2.4 +/- 0.4 in the density profile at the virial radius. We compare our result with several analytical models from the literature (NFW, Moore et al. 1999, softened isothermal sphere, and Burkert 1995) and find that all are acceptable. However, our data do not provide compelling evidence for the existence of a core; as a matter of fact, the best-fitting core models have core-radii well below 100/h kpc. The upper limit we put on the size of the core-radius provides a constraint for the scattering cross-section of dark matter particles. The total-mass density appears to be traced remarkably well by the luminosity density of the Early-type galaxies. On the contrary, the luminosity density of the brightest ellipticals increases faster towards the center than the mass density, while the luminosity density profiles of the early and late spirals are somewhat flatter than the mass density profile. (Abridged)
The Gaia-ESO survey is a large public spectroscopic survey aimed at investigating the origin and formation history of our Galaxy by collecting spectroscopy of representative samples (about 10^5 Milky Way stars) of all Galactic stellar populations, in the field and in clusters. The survey uses globular clusters as intra- and inter-survey calibrators, deriving stellar atmospheric parameters and abundances of a significant number of stars in clusters, along with radial velocity determinations. We used precise radial velocities of a large number of stars in seven globular clusters (NGC 1851, NGC 2808, NGC 4372, NGC 4833, NGC 5927, NGC 6752, and NGC 7078) to validate pipeline results and to preliminarily investigate the cluster internal kinematics. Radial velocity measurements were extracted from FLAMES/GIRAFFE spectra processed by the survey pipeline as part of the second internal data release of data products to ESO. We complemented our sample with ESO archival data obtained with different instrument configurations. Reliable radial velocity measurements for 1513 bona fide cluster star members were obtained in total. We measured systemic rotation, estimated central velocity dispersions, and present velocity dispersion profiles of all the selected clusters, providing the first velocity dispersion curve and the first estimate of the central velocity dispersion for the cluster NGC~5927. Finally, we explore the possible link between cluster kinematics and other physical parameters. The analysis we present here demonstrates that Gaia-ESO survey data are sufficiently accurate to be used in studies of kinematics of stellar systems and stellar populations in the Milky Way.
91 - M. Scodeggio 1998
The results of a search for distant clusters of galaxies performed using the I-band data obtained by the ESO Imaging Survey (EIS) are presented. Cluster candidates are identified using a matched filter algorithm, that provides not only an objective d etection criterion, but also the means to estimate the cluster redshift and richness. A preliminary sample of distant clusters has been obtained, containing 252 cluster candidates with estimated redshift in the interval 0.2 < z < 1.3 (median redshift z_med ~ 0.4) over an area of approximately 14 square degrees. The adopted selection criteria for the inclusion of cluster candidates in this sample has been in general conservative, as the primary concern has been the reliability of the candidates rather than the completeness of the sample.
122 - C. Halliday 2004
We present spectroscopic observations of galaxies in 4 clusters at z = 0.7-0.8 and in one cluster at z~0.5 obtained with the FORS2 spectrograph on the VLT as part of the ESO Distant Cluster Survey (EDisCS), a photometric and spectroscopic survey of 2 0 intermediate to high redshift clusters. We describe our target selection, mask design, observation and data reduction procedures, using these first 5 clusters to demonstrate how our strategies maximise the number of cluster members for which we obtain spectroscopy. We present catalogues containing positions, I-band magnitudes and spectroscopic redshifts for galaxies in the fields of our 5 clusters. These contain 236 cluster members, with the number of members per cluster ranging from 30 to 67. Our spectroscopic success rate, i.e. the fraction of spectroscopic targets which are cluster members, averages 50% and ranges from 30% to 75%. We use a robust biweight estimator to measure cluster velocity dispersions from our spectroscopic redshift samples. We also make a first assessment of substructure within our clusters. The velocity dispersions range from 400 to 1100 km s-1. Some of the redshift distributions are significantly non-Gaussian and we find evidence for significant substructure in two clusters, one at z~0.79 and the other at z~0.54. Both have velocity dispersions exceeding 1000 km s-1 but are clearly not fully virialised; their velocity dispersions may thus be a poor indicator of their masses. The properties of these first 5 EDisCS clusters span a wide range in redshift, velocity dispersion, richness and substructure, but are representative of the sample as a whole. Spectroscopy for the full dataset will allow a comprehensive study of galaxy evolution as a function of cluster environment and redshift.
125 - T. Valentinuzzi 2010
We find a significant number of massive and compact galaxies in clusters from the ESO Distant Clusters Survey (EDisCS) at 0.4<z<1. They have similar stellar masses, ages, sizes and axial ratios to local z~0.04 compact galaxies in WINGS clusters, and to z=1.4-2 massive and passive galaxies found in the general field. If non-BCG cluster galaxies of all densities, morphologies and spectral types are considered, the median size of EDisCS galaxies is only a factor 1.18 smaller than in WINGS. We show that for morphologically selected samples, the morphological evolution taking place in a significant fraction of galaxies during the last Gyrs may introduce an apparent, spurious evolution of size with redshift, which is actually due to intrinsic differences in the selected samples. We conclude that the median mass-size relation of cluster galaxies does not evolve significantly from z~0.7 to z~0.04. In contrast, the masses and sizes of BCGs and galaxies with M*>4x10^11 Msun have significantly increased by a factor of 2 and 4, respectively, confirming the results of a number of recent works on the subject. Our findings show that progenitor bias effects play an important role in the size-growth paradigm of massive and passive galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا