ﻻ يوجد ملخص باللغة العربية
We present mid-infrared images at $6.7 mu m$ and $15 mu m$ of ``The Cartwheel (AM~0035-33), the prototypical collisional ring galaxy. The observations, taken with ISOCAM, reveal the distribution of hot dust in the galaxy and its two companions in the north-east. The intensity of the mid-IR emission from the outer star forming ring of the Cartwheel shows considerable azimuthal variation and peaks at the most active H$alpha$ region of the ring. The 15 $mu m$ to 6.7 $mu m$ flux ratio of 5.2 is the highest among all the galaxies of our sample. A surprising result of our observations is the discovery of significant emission from the inner regions of the galaxy, including the inner ring, spokes and nucleus, where previously only low level H$alpha$ emission had been reported. At 6.7 $mu m$, this emission is stronger than the one from the outer star forming ring, and at 15 $mu m$, it represents 40% of the emission from the outer ring. The H$alpha$ to mid-IR flux ratios from the inner regions are consistent with the heating of grains from weak star formation activity.
In this paper, we couple together the dust evolution code two-pop-py with the thermochemical disk modelling code ProDiMo. We create a series of thermochemical disk models that simulate the evolution of dust over time from 0.018 Myr to 10 Myr, includi
The extreme environment provided by the Cartwheel ring is analyzed to study its X-ray and optical-UV properties. We compare the Cartwheel with the other members of its group and study the system as a whole in the X-ray band. We analyze the data of th
Mid-infrared spectroscopy of dense illuminated ridges (or photodissociation regions, PDRs) suggests dust evolution. Such evolution must be reflected in the gas physical properties through processes like photo-electric heating or H_2 formation. With S
We examine the properties of galaxies in the Galaxies and Mass Assembly (GAMA) survey located in voids with radii $>10~h^{-1}$ Mpc. Utilising the GAMA equatorial survey, 592 void galaxies are identified out to z~0.1 brighter than $M_{r} = -18.4$, our
Because the 8 {mu}m polycyclic aromatic hydrocarbon (PAH) emission has been found to correlate with other well-known star formation tracers, it has widely been used as a star formation rate (SFR) tracer. There are, however, studies that challenge the