ﻻ يوجد ملخص باللغة العربية
The soft-gamma repeater SGR 1900+14 became active again on June 1998 after a long period of quiescence; it remained at a low state of activity until August 1998, when it emitted a series of extraordinarily intense outbursts. We have observed the source with RXTE twice, during the onset of each active episode. We confirm the pulsations at the 5.16 s period reported earlier (Hurley et al. 1998b, Hurley et al. 1998 e) from SGR 1900+14. Here we report the detection of a secular spindown of the pulse period at an average rate of 1.1*10^{-10} s/s. In view of the strong similarities between SGRs, we attribute the spindown of SGR 1900+14 to magnetic dipole radiation, possibly accelerated by a quiescent flux, as in the case of SGR 1806-20 (Kouveliotou et al. 1998a). This allows an estimate of the pulsar dipolar magnetic field, which is 2-8*10^{14} G. Our results confirm that SGRs are magnetars.
We present a systematic analysis of all the BeppoSAX data of SGR1900+14. The observations spanning five years show that the source was brighter than usual on two occasions: ~20 days after the August 1998 giant flare and during the 10^5 s long X-ray a
The Soft Gamma Repeater SGR 1900+14 entered a remarkable phase of activity during the summer of 1998. This activity peaked on August 27, 1998 when a giant periodic gamma-ray flare resembling the famous March 5, 1979 event from SGR 0526-66 was recorde
Magnetars are a special class of slowly rotating neutron stars with extremely strong magnetic fields -- at least an order of magnitude larger than those of the normal radio pulsars. The potential evolutionary links and differences between these two t
On 2009 June 5, the Gamma-ray Burst Monitor (GBM) onboard the Fermi Gamma-ray Space Telescope triggered on two short, and relatively dim bursts with spectral properties similar to Soft Gamma Repeater (SGR) bursts. Independent localizations of the bur
Magnetar wind nebulae (MWNe), created by new-born millisecond magnetars, and magnetar giant flares are PeVatron candidates and even potential sources of ultra high energy ($E>10^{18} textrm{ eV}$) cosmic rays (UHECRs). Nonthermal high-energy (HE, $E>